Journal Description
Particles
Particles
is an international, open access, peer-reviewed journal covering all aspects of nuclear physics, particle physics and astrophysics science, and is published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), Inspec, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q2 (Astronomy and Astrophysics) / CiteScore - Q2 (Nuclear and High Energy Physics)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 23.8 days after submission; acceptance to publication is undertaken in 4.7 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
2.3 (2024);
5-Year Impact Factor:
1.8 (2024)
Latest Articles
Diquark Study in Quark Model
Particles 2025, 8(4), 83; https://doi.org/10.3390/particles8040083 - 2 Oct 2025
Abstract
To investigate diquark correlation in baryons, the baryon spectra with different light–heavy quark combinations are calculated using Gaussian expansion method within both the naive quark model and the chiral quark model. By computing the diquark energies and separations between any two quarks in
[...] Read more.
To investigate diquark correlation in baryons, the baryon spectra with different light–heavy quark combinations are calculated using Gaussian expansion method within both the naive quark model and the chiral quark model. By computing the diquark energies and separations between any two quarks in baryons, we analyze the diquark effect in the -q/Q, -Q, -q/Q, and -q/Q systems (where , or s; ). The results show that diquark correlations exist in baryons. In particular, for -Q and -q systems, the same type of diquark exhibits nearly identical energy and size across different baryons. In the orbital ground states of baryons, scalar–isoscalar diquarks have lower energy and a smaller size compared to vector–isovector diquark, which qualifies them as “good diquarks”. In -q systems, a larger mass of Q leads to a smaller diquark separation and a more pronounced diquark effect. In -Q systems, the separation between the two light quarks remains larger than that between a light and a heavy quark, indicating that the internal structure of such diquarks must be taken into account. A comparison between the naive quark model and the chiral quark model reveals that the introduction of meson exchange slightly increases the diquark size in most systems.
Full article
(This article belongs to the Special Issue Strong QCD and Hadron Structure)
Open AccessArticle
A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators
by
Francesco Dimiccoli, Francesco Maria Follega, Luigi Ernesto Ghezzer, Roberto Iuppa, Alessandro Lega, Riccardo Nicolaidis, Francesco Nozzoli, Ester Ricci, Enrico Verroi and Paolo Zuccon
Particles 2025, 8(4), 82; https://doi.org/10.3390/particles8040082 - 30 Sep 2025
Abstract
Lutetium–Yttrium Oxyorthosilicate (LYSO) crystals and EJ-200 plastic scintillators are widely recognized fast scintillating materials, valued for their high light yield and mechanical robustness, which make them well suited for demanding applications in high-energy physics and space research. Their non-proportional light response, along with
[...] Read more.
Lutetium–Yttrium Oxyorthosilicate (LYSO) crystals and EJ-200 plastic scintillators are widely recognized fast scintillating materials, valued for their high light yield and mechanical robustness, which make them well suited for demanding applications in high-energy physics and space research. Their non-proportional light response, along with their non-linear behavior at low-energy X-rays, has been extensively investigated in previous studies, revealing potential systematic effects in existing measurements. In this work, light quenching in both scintillators is measured under charged-particle excitation. The results are interpreted using the modified Birks–Onsager model, which provides a theoretical framework for understanding the underlying quenching mechanisms, as well as a generalized logistic parametrization, offering experimentalists a useful tool to characterize the detector’s light yield and associated uncertainties.
Full article
(This article belongs to the Special Issue Advances in Space AstroParticle Physics: Frontier Technologies for Particle Measurements in Space, 2025 Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Development of Array-Type Secondary Electron Emission Monitor Toward Single-Shot Measurement of Extraction Efficiency of FEL Oscillators
by
Zhuang Bi, Kotaro Tanaka, Heishun Zen and Hideaki Ohgaki
Particles 2025, 8(3), 81; https://doi.org/10.3390/particles8030081 - 19 Sep 2025
Abstract
To enable the single-shot measurement of extraction efficiency, a key parameter of an FEL oscillator, we developed an array-type secondary electron emission monitor capable of measuring the temporal evolution of the electron beam energy distribution in a macro-pulse at KU-FEL. The monitor consists
[...] Read more.
To enable the single-shot measurement of extraction efficiency, a key parameter of an FEL oscillator, we developed an array-type secondary electron emission monitor capable of measuring the temporal evolution of the electron beam energy distribution in a macro-pulse at KU-FEL. The monitor consists of 24 ribbon-shaped electrodes and 2 shielding electrodes, and it is positioned after the energy analyzer magnet and just before a beam dump. The beam energy evolutions in a macro-pulse with and without FEL lasing were measured in a single shot with approximately 100 ns temporal resolution. From the results obtained, the extraction efficiency of FEL oscillators can be evaluated.
Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
Crosstalk Simulation of Magnets for Siam Photon Source II Storage Ring
by
Warissara Tangyotkhajorn, Thongchai Leetha, Supachai Prawanta and Prapaiwan Sunwong
Particles 2025, 8(3), 80; https://doi.org/10.3390/particles8030080 - 13 Sep 2025
Abstract
During the detailed design of magnets for the storage ring of Siam Photon Source II (SPS-II), the influence of magnetic crosstalk between adjacent magnets in the compact Double Triple Bend Achromat (DTBA) lattice was investigated. Using Opera-3D magnetostatic simulation, six magnet pairs were
[...] Read more.
During the detailed design of magnets for the storage ring of Siam Photon Source II (SPS-II), the influence of magnetic crosstalk between adjacent magnets in the compact Double Triple Bend Achromat (DTBA) lattice was investigated. Using Opera-3D magnetostatic simulation, six magnet pairs were analyzed to investigate the changes in magnetic field distribution along the electron trajectory and integrated magnetic field within each magnet aperture. The study employed polynomial and Fourier analyses to calculate multipole field components. Results indicate that magnetic crosstalk affects the field distribution in the region between magnets, particularly for the defocusing quadrupole and dipole magnets (QD2-D01) and the focusing quadrupole and octupole magnets (QF42-OF1) pairs, which have the pole-to-pole distances of 153.37 mm and 116.45 mm, respectively. Although these separations exceed the estimated fringe field regions, deviations of up to 1% in the main field components were observed. Notably, even an unpowered neighboring magnet contributes to magnetic field distortion due to the modified magnetic flux distribution. Crosstalk effects on the higher-order multipole fields are mostly within the acceptable limit, except for the extra quadrupole field from QD2 found in the dipole D01 magnet. This study highlights the effects of magnetic interference in tightly packed lattice and underscores the need to include a complete multipole field data with crosstalk consideration in the SPS-II lattice model in order to ensure an accurate beam dynamics simulation and predict the operating current adjustments for machine commissioning.
Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
High-Efficiency WLS Plastic for a Compact Cherenkov Detector
by
Francesco Nozzoli, Luigi Ernesto Ghezzer, Francesco Bruni, Daniele Corti, Francesco Meinardi, Riccardo Nicolaidis, Leonardo Ricci, Piero Spinnato, Enrico Verroi and Paolo Zuccon
Particles 2025, 8(3), 79; https://doi.org/10.3390/particles8030079 - 12 Sep 2025
Abstract
The Cherenkov effect, whereby a charged particle emits light when traveling faster than the phase velocity of light in a dielectric medium, is widely employed in particle identification techniques. However, Cherenkov light yield is relatively low, typically amounting to only 100–200 visible photons
[...] Read more.
The Cherenkov effect, whereby a charged particle emits light when traveling faster than the phase velocity of light in a dielectric medium, is widely employed in particle identification techniques. However, Cherenkov light yield is relatively low, typically amounting to only 100–200 visible photons per centimeter of path length in materials like water, plastic, or glass. In this study, we investigate the optical response of FB118, a wavelength-shifting (WLS) plastic developed by Glass to Power, under exposure to ionizing particles. Our measurements confirm the absence of residual scintillation in FB118, allowing for a clean separation of Cherenkov signals. Moreover, the intrinsic WLS properties of the material enable a significant enhancement of light detection in the visible range. These features make FB118 a promising candidate for use in compact Cherenkov detectors, particularly in astroparticle physics experiments where space and power constraints demand efficient, compact solutions.
Full article
(This article belongs to the Special Issue Advances in Space AstroParticle Physics: Frontier Technologies for Particle Measurements in Space, 2025 Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Design and Optimization of a Broadband Stripline Kicker for Low Beam Emittance Ring Accelerators
by
Sakdinan Naeosuphap, Sarunyu Chaichuay, Siriwan Jummunt and Porntip Sudmuang
Particles 2025, 8(3), 78; https://doi.org/10.3390/particles8030078 - 29 Aug 2025
Abstract
The performance and beam quality of the new fourth-generation synchrotron light source with ultra-low emittance are highly susceptible to coupled-bunch instabilities. These instabilities arise from the interaction between the bunched electron beam and the surrounding vacuum chamber installations. To mitigate these effects, the
[...] Read more.
The performance and beam quality of the new fourth-generation synchrotron light source with ultra-low emittance are highly susceptible to coupled-bunch instabilities. These instabilities arise from the interaction between the bunched electron beam and the surrounding vacuum chamber installations. To mitigate these effects, the installation of a transverse bunch-by-bunch feedback system is planned. This system will comprise a button-type beam position monitor (BPM) for beam signal detection, a digital feedback controller, a broadband power amplifier, and a broadband stripline kicker as the primary actuator. One of the critical challenges lies in the development of the stripline kicker, which must be optimized for high shunt impedance and wide bandwidth while minimizing beam-coupling impedance. This work focuses on the comprehensive design of the stripline kicker intended for transverse (horizontal and vertical) bunch-by-bunch feedback in the Siam Photon Source II (SPS-II) storage ring. The stripline kicker design also incorporates features to enable its use for beam excitation in the SPS-II tune measurement system. The optimization process involves analytical approximations and detailed numerical electromagnetic field analysis of the stripline’s 3D geometry, focusing on impedance matching, field homogeneity, power transmission, and beam-coupling impedance. The details of engineering design are discussed to ensure that it meets the fabrication possibilities and stringent requirements of the SPS-II accelerator.
Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
Design and Prototype Development of a Combined-Function Quadrupole-Sextupole Magnet for the SPS-II Booster Synchrotron
by
Siriwan Jummunt, Prapaiwan Sunwong, Supachai Prawanta, Thongchai Leetha, Pajeeraporn Numanoy, Netchanok Thiabsi and Porntip Sudmuang
Particles 2025, 8(3), 77; https://doi.org/10.3390/particles8030077 - 28 Aug 2025
Abstract
The development of a prototype booster magnet for the Siam Photon Source II (SPS-II) was launched in 2023 as a milestone in advancing accelerator technology through domestic manufacturing capabilities in Thailand. In the SPS-II booster lattice, the magnet integrates focusing quadrupole and sextupole
[...] Read more.
The development of a prototype booster magnet for the Siam Photon Source II (SPS-II) was launched in 2023 as a milestone in advancing accelerator technology through domestic manufacturing capabilities in Thailand. In the SPS-II booster lattice, the magnet integrates focusing quadrupole and sextupole functions into a combined-function quadrupole-sextupole magnet, enabling a more compact lattice and reducing the total number of magnets required. To meet the required magnet specifications, the design was carefully optimized using Opera-3D software (version 2021) to achieve a quadrupole gradient of 19.395 T/m and a sextupole gradient of 22.327 T/m2 over an effective magnetic length of 0.25 m, while maintaining a magnetic field homogeneity better than 1 × 10−3. A key manufacturing challenge involved fabricating laminated magnet cores and establishing precise production processes. Magnetic field measurements performed on the prototype using the Hall-probe technique validated the magnet’s quality and accuracy. This paper presents the overall development process, including the magnet design, details of the magnetic field simulation methodology, prototype fabrication, and initial magnetic field measurements.
Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
The Study and Development of BPM Noise Monitoring at the Siam Photon Source
by
Wanisa Promdee, Sukho Kongtawong, Surakawin Suebka, Thapakron Pulampong, Natthawut Suradet, Roengrut Rujanakraikarn, Puttimate Hirunuran and Siriwan Jummunt
Particles 2025, 8(3), 76; https://doi.org/10.3390/particles8030076 - 25 Aug 2025
Abstract
This study presents the development of a noise-monitoring system for the storage ring at the Siam Photon Source, designed to detect and classify noise patterns in real time using beam position monitor (BPM) data. Noise patterns were categorized into four classes: broad peak,
[...] Read more.
This study presents the development of a noise-monitoring system for the storage ring at the Siam Photon Source, designed to detect and classify noise patterns in real time using beam position monitor (BPM) data. Noise patterns were categorized into four classes: broad peak, multipeak, normal peak, and no beam. Two BPMs located at the multipole wiggler section, BPM-MPW1 and BPM-MPW2, were selected for detailed monitoring based on consistent noise trends observed across the ring. The dataset was organized in two complementary formats: two-dimensional (2D) images used for training and validating the models and one-dimensional (1D) CSV files containing the corresponding raw numerical signal data. Pre-trained deep learning and 1D convolutional neural network (CNN) models were employed to classify these patterns, achieving an overall classification accuracy of up to 99.83%. The system integrates with the EPICS control framework and archiver log data, enabling continuous data acquisition and long-term analyses. Visualization and monitoring features were developed using CS-Studio/Phoebus, providing both operators and beamline scientists with intuitive tools to track beam quality and investigate noise-related anomalies. This approach highlights the potential of combining beam diagnostics with machine learning to enhance operational stability and optimize the synchrotron radiation performance for user experiments.
Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
Test of Diamond sCVD Detectors at High Flux of Fast Neutrons
by
Leo Weissman, Asher Shor and Sergey Vaintraub
Particles 2025, 8(3), 75; https://doi.org/10.3390/particles8030075 - 7 Aug 2025
Abstract
We have tested the performance of spectroscopic single-crystal Chemical Vapor-Deposited (sCVD) diamond detectors with radioactive sources and with a pulsed deuterium-tritium neutron generator. The tests demonstrate that the detectors could provide good timing and spectroscopic information at high neutron fluxes. The spectroscopic information
[...] Read more.
We have tested the performance of spectroscopic single-crystal Chemical Vapor-Deposited (sCVD) diamond detectors with radioactive sources and with a pulsed deuterium-tritium neutron generator. The tests demonstrate that the detectors could provide good timing and spectroscopic information at high neutron fluxes. The spectroscopic information can be obtained at a 14 MeV neutron rate as high as 1010 n/cm2/s, despite some limitations associated with pulse character of the used neutron generator. Monte-Carlo simulations were performed in order to achieve better understanding of neutron interaction with the detector material. Possible applications for the use of the detectors at Soreq Applied Research Accelerator Facility (SARAF) are considered. The detectors could be used as reliable neutron rate monitors in the vicinity of a strong accelerator-based source of energetic neutrons. The detectors could also be utilized as time-of-flight tagging counters in nuclear physics experiments under condition of high neutron fluxes during short beam pulses. In particular, measurement of the 12C(n,n′)3α cross-section is discussed.
Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
►▼
Show Figures

Figure 1
Open AccessArticle
Study of High-Altitude Coplanarity Phenomena in Super-High-Energy EAS Cores with a Thick Calorimeter
by
Rauf Mukhamedshin, Turlan Sadykov, Vladimir Galkin, Alia Argynova, Aidana Almenova, Dauren Muratov, Khanshaiym Makhmet, Valery Zhukov, Vladimir Ryabov, Vyacheslav Piscal, Yernar Tautayev and Zhakypbek Sadykov
Particles 2025, 8(3), 74; https://doi.org/10.3390/particles8030074 - 4 Aug 2025
Abstract
A number of phenomena were observed in experiments on the study of cosmic rays at mountain altitudes and in the stratosphere at ultra-high energies; in particular, the coplanarity of the most energetic particles and local subcascades in the so-called families of γ-rays and
[...] Read more.
A number of phenomena were observed in experiments on the study of cosmic rays at mountain altitudes and in the stratosphere at ultra-high energies; in particular, the coplanarity of the most energetic particles and local subcascades in the so-called families of γ-rays and hadrons in the cores of extensive air showers at E0 ≳ 2·1015 eV (√s ≳ 2 TeV). These effects are not described by theoretical models. To explain this phenomenon, it may be necessary to introduce a new process of generating the most energetic particles in the interactions of hadrons with the nuclei of atmospheric atoms. A new experimental array of cosmic ray detectors, including the ADRON-55 ionization calorimeter, has been created to study processes in EAS cores at ultra-high energies. The possibility of using it to study the coplanarity effect is being considered.
Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
►▼
Show Figures

Figure 1
Open AccessArticle
A Scintillation Hodoscope for Measuring the Flux of Cosmic Ray Muons at the Tien Shan High Mountain Station
by
Alexander Shepetov, Aliya Baktoraz, Orazaly Kalikulov, Svetlana Mamina, Yerzhan Mukhamejanov, Kanat Mukashev, Vladimir Ryabov, Nurzhan Saduyev, Turlan Sadykov, Saken Shinbulatov, Tairzhan Skokbayev, Ivan Sopko, Shynbolat Utey, Ludmila Vildanova, Nurzhan Yerezhep and Valery Zhukov
Particles 2025, 8(3), 73; https://doi.org/10.3390/particles8030073 - 4 Aug 2025
Abstract
For further investigation of the properties of the muon component in the core regions of extensive air showers (EASs), a new underground hodoscopic set-up with a total sensitive area of 22 m2 was built at the Tien Shan High Mountain Cosmic Ray
[...] Read more.
For further investigation of the properties of the muon component in the core regions of extensive air showers (EASs), a new underground hodoscopic set-up with a total sensitive area of 22 m2 was built at the Tien Shan High Mountain Cosmic Ray Station. The hodoscope is based on a set of large-sized scintillation charged particle detectors with an output signal of analog type. The installation ensures a (5–8) GeV energy threshold of muon registration and a ∼ dynamic range for the measurement of the density of muon flux. A program facility was designed that uses modern machine learning techniques for automated search for the typical scintillation pulse pattern in an oscillogram of a noisy analog signal at the output of the hodoscope detector. The program provides a ∼99% detection probability of useful signals, with a relative share of false positives below 1%, and has a sufficient operation speed for real-time analysis of incoming data. Complete verification of the hardware and software tools was performed under realistic operation conditions, and the results obtained demonstrate the correctness of the proposed method and its practical applicability to the investigation of the muon flux in EASs. In the course of the installation testing, a preliminary physical result was obtained concerning the rise of the multiplicity of muon particles around an EAS core in dependence on the primary EAS energy.
Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of the Coulomb Interaction on Nuclear Deformation and Drip Lines
by
Kenta Hagihara, Takashi Nakatsukasa and Nobuo Hinohara
Particles 2025, 8(3), 72; https://doi.org/10.3390/particles8030072 - 24 Jul 2025
Abstract
Nuclei are self-bound systems in which the strong interaction (nuclear force) plays a dominant role, and the isospin is approximately a good quantum number. The isospin symmetry is primarily violated by electromagnetic interactions, namely Coulomb interactions among protons, the effects of which need
[...] Read more.
Nuclei are self-bound systems in which the strong interaction (nuclear force) plays a dominant role, and the isospin is approximately a good quantum number. The isospin symmetry is primarily violated by electromagnetic interactions, namely Coulomb interactions among protons, the effects of which need be studied to understand the importance of the isospin symmetry. We investigate the effect of the Coulomb interaction on nuclear properties, especially quadrupole deformation and neutron drip line, utilizing the density functional method, which provides a universal description of nuclear systems in the entire nuclear chart. We carry out calculations of even–even nuclei with a proton number of . The results show that the Coulomb interaction plays a significant role in enhancing quadrupole deformation across a wide range of nuclei. We also find that, after including the Coulomb interaction, some nuclei near the neutron drip line become stable against two-neutron emissions, resulting in a shift in the drip line towards larger neutron numbers.
Full article
(This article belongs to the Section Nuclear and Hadronic Theory)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigating Coherent Smith–Purcell Radiation from Shallow Blazed Gratings: Shading Effect’s Influence on Surface Current Model
by
Hiroki Yamada, Toshiya Muto, Fujio Hinode, Shigeru Kashiwagi, Kenichi Nanbu, Ikuro Nagasawa, Kotaro Shibata, Ken Takahashi, Anjali Bhagwan Kavar, Kodai Kudo, Hayato Abiko, Pitchayapak Kitisri and Hiroyuki Hama
Particles 2025, 8(3), 71; https://doi.org/10.3390/particles8030071 - 23 Jul 2025
Abstract
To evaluate the characteristics of Smith–Purcell radiation, we modified a surface current model to consider the geometrical shading effect of a grating, which was ignored in the original one, and compared it with measurements for a grating with a shallow blaze angle. According
[...] Read more.
To evaluate the characteristics of Smith–Purcell radiation, we modified a surface current model to consider the geometrical shading effect of a grating, which was ignored in the original one, and compared it with measurements for a grating with a shallow blaze angle. According to the numerical calculations based on the surface current model with and without the shading effect, it was found that the azimuthal angular distribution, polarization components and the variation in radiation intensity with the blaze angle of the grating are predicted to show significantly different behaviors under our experimental conditions. Generating the coherent Smith–Purcell radiation using the very short electron bunch in the test accelerator, t-ACTS at the Research Center for Accelerator and Radioisotope Science, Tohoku University, we measured polarization and the angular distribution of radiation for the gratings with different blaze angles. This study supports the validity of the modified surface current model with the shading effect and will provide new insights into the evaluation of the characteristics of Smith–Purcell radiation.
Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
►▼
Show Figures

Figure 1
Open AccessReview
Intertwined Orders and the Physics of High Temperature Superconductors
by
Eduardo Fradkin
Particles 2025, 8(3), 70; https://doi.org/10.3390/particles8030070 - 23 Jul 2025
Abstract
Complex phase diagrams are a generic feature of quantum materials that display high-temperature superconductivity. In addition to d-wave superconductivity (or other unconventional states), these phase diagrams typically include various forms of charge-ordered phases, including charge-density waves and/or spin-density waves, as well as electronic
[...] Read more.
Complex phase diagrams are a generic feature of quantum materials that display high-temperature superconductivity. In addition to d-wave superconductivity (or other unconventional states), these phase diagrams typically include various forms of charge-ordered phases, including charge-density waves and/or spin-density waves, as well as electronic nematic states. In most cases, these phases have critical temperatures comparable in magnitude to that of the superconducting state and appear in a “pseudo-gap” regime. In these systems, the high temperature state does not produce a good metal with well-defined quasiparticles but a ”strange metal”. These states typically arise from doping a strongly correlated Mott insulator. With my collaborators, I have identified these behaviors as a problem with “Intertwined Orders”. A pair-density wave is a type of superconducting state that embodies the physics of intertwined orders. Here, I discuss the phenomenology of intertwined orders and the quantum materials that are known to display these behaviors.
Full article
(This article belongs to the Special Issue Selected Papers from the 22nd International Conference on Recent Progress in Many-Body Theories)
►▼
Show Figures

Figure 1
Open AccessArticle
Background Measurements and Simulations of the ComPair Balloon Flight
by
Zachary Metzler, Nicholas Kirschner, Lucas Smith, Nicholas Cannady, Makoto Sasaki, Daniel Shy, Regina Caputo, Carolyn Kierans, Aleksey Bolotnikov, Thomas J. Caligiure, Gabriella A. Carini, Alexander Wilder Crosier, Jack Fried, Priyarshini Ghosh, Sean Griffin, Jon Eric Grove, Elizabeth Hays, Sven Herrmann, Emily Kong, Iker Liceaga-Indart, Julie McEnery, John Mitchell, Alexander A. Moiseev, Lucas Parker, Jeremy Perkins, Bernard Phlips, Adam J. Schoenwald, Clio Sleator, David J. Thompson, Janeth Valverde, Sambid Wasti, Richard Woolf, Eric Wulf and Anna Zajczykadd
Show full author list
remove
Hide full author list
Particles 2025, 8(3), 69; https://doi.org/10.3390/particles8030069 - 19 Jul 2025
Abstract
ComPair, a prototype of the All-sky Medium Energy Gamma-ray Observatory (AMEGO), completed a short-duration high-altitude balloon campaign on 27 August 2023 from Fort Sumner, New Mexico, USA. The goal of the balloon flight was to demonstrate ComPair as both a Compton and Pair
[...] Read more.
ComPair, a prototype of the All-sky Medium Energy Gamma-ray Observatory (AMEGO), completed a short-duration high-altitude balloon campaign on 27 August 2023 from Fort Sumner, New Mexico, USA. The goal of the balloon flight was to demonstrate ComPair as both a Compton and Pair telescope in flight, reject the charged particle background, and measure the background -ray spectrum. This analysis compares measurements from the balloon flight with Monte Carlo simulations to benchmark the instrument. The comparison finds good agreement between the measurements and simulations and supports the conclusion that ComPair accomplished its goals for the balloon campaign. Additionally, two charged particle background rejection schemes are discussed: a soft ACD veto that records a higher charged particle event rate but with less risk of event loss, and a hard ACD veto that limits the charged particle event rate on board. There was little difference in the measured spectra from the soft and hard ACD veto schemes, indicating that the hard ACD veto could be used for future flights. The successes of ComPair’s engineering flight will inform the development of the next generation of ComPair with upgraded detector technology and larger active area.
Full article
(This article belongs to the Special Issue Advances in Space AstroParticle Physics: Frontier Technologies for Particle Measurements in Space, 2025 Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
High Average Current Electron Beam Generation Using RF Gated Thermionic Electron Gun
by
Anjali Bhagwan Kavar, Shigeru Kashiwagi, Kai Masuda, Toshiya Muto, Fujio Hinode, Kenichi Nanbu, Ikuro Nagasawa, Kotaro Shibata, Ken Takahashi, Hiroki Yamada, Kodai Kudo, Hayato Abiko, Pitchayapak Kitisri and Hiroyuki Hama
Particles 2025, 8(3), 68; https://doi.org/10.3390/particles8030068 - 8 Jul 2025
Abstract
High-current electron beams can significantly enhance the productivity of variety of applications including medical radioisotope (RI) production and wastewater purification. High-power superconducting radio frequency (SRF) linacs are capable of producing such high-current electron beams due to the key advantage to operate in continuous
[...] Read more.
High-current electron beams can significantly enhance the productivity of variety of applications including medical radioisotope (RI) production and wastewater purification. High-power superconducting radio frequency (SRF) linacs are capable of producing such high-current electron beams due to the key advantage to operate in continuous wave (CW) mode. However, this requires an injector capable of generating electron bunches with high repetition rate and in CW mode, while minimizing beam losses to avoid damage to SRF cavities due to quenching. RF gating to the grid of a thermionic electron gun is a promising solution, as it ensures CW bunch generation at the repetition rate same as the fundamental or sub-harmonics of the accelerating RF frequency, with minimal beam loss. This paper presents detailed beam dynamics simulations demonstrating that an RF-gated gun operating at 1.3 GHz can generate bunches with 148 ps full width with 8.96 pC charge.
Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
EM Characterization of a Compact RFQ Cold Model Prototype Employing a New Power Injection Scheme
by
Marco A. López, Joaquín Portilla, Victor Etxebarria, Iñigo Arredondo and Jorge Feuchtwanger
Particles 2025, 8(3), 67; https://doi.org/10.3390/particles8030067 - 1 Jul 2025
Abstract
The experimental and computational characterization of a cold model prototype designed to test the electromagnetic properties of a new RFQ (Radio-Frequency Quadrupole) cavity is reported. This cavity is intended to be an essential part of a compact, high-gradient proton accelerator for medical purposes.
[...] Read more.
The experimental and computational characterization of a cold model prototype designed to test the electromagnetic properties of a new RFQ (Radio-Frequency Quadrupole) cavity is reported. This cavity is intended to be an essential part of a compact, high-gradient proton accelerator for medical purposes. The RFQ’s design employs a novel RF power-coupler injection solution. One common way to couple the RF power in proton RFQs has been the use of loop-couplers inserted into the mid-section of the RFQ’s lobe sections. This technique has been demonstrated to be reliable and effective but introduces a significant perturbation into the lobe that can be more noticeable when dealing with compact structures. We propose a RF injection scheme that uses direct transition from a coaxial cable to the RFQ by connecting the inner coaxial conductor to the RFQ vane body. As a consequence, the lobe geometry is not perturbed, and the transversal electrical fields are directly excited through the vanes. Moreover, by using a pair of such couplers connected to opposite vanes at a given transversal plane of the RFQ, it is also possible to excite the desired quadrupolar TE210 modes while avoiding the excitation of dipolar TE110 modes. The resonances corresponding to different RFQ modes have been characterized, and the dependence of the amplitude of the modes on the relative phase of the field injected through the RF power ports has been demonstrated both by measurements and simulations.
Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
►▼
Show Figures

Figure 1
Open AccessArticle
Design and Development of Dipole Magnet for MIR/THz Free Electron Laser Beam Dumps and Spectrometers
by
Ekkachai Kongmon, Kantaphon Damminsek, Nopadon Khangrang, Sakhorn Rimjaem and Chitrlada Thongbai
Particles 2025, 8(3), 66; https://doi.org/10.3390/particles8030066 - 25 Jun 2025
Abstract
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending
[...] Read more.
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending angle for electron beams with energies up to 30 MeV, without requiring water cooling. Using CST EM Studio for 3D magnetic field simulations and ASTRA for particle tracking, the THz dipole (with 414 turns) and MIR dipole (with 600 turns) generated magnetic fields of 0.1739 T and 0.2588 T, respectively, while both operating at currents below 10 A. Performance analysis confirmed effective beam deflection, with the THz dipole showing that it was capable of handling beam energies up to 20 MeV and the MIR dipole could handle up to 30 MeV. The energy measurement at the spectrometer screen position was simulated, taking into account transverse beam size, fringe fields, and space charge effects, using ASTRA. The energy resolution, defined as the ratio of energy uncertainty to the mean energy, was evaluated for selected cases. For beam energies of 16 MeV and 25 MeV, resolutions of 0.2% and 0.5% were achieved with transverse beam sizes of 1 mm and 4 mm, respectively. All evaluated cases maintained energy resolutions below 1%, confirming the spectrometer’s suitability for high-precision beam diagnostics. Furthermore, the relationship between the initial and measured energy spread errors, taking into account a camera resolution of 0.1 mm/pixel, was evaluated. Simulations across various beam energies (10–16 MeV for the THz dipole and 20–25 MeV for the MIR dipole) confirmed that the measurement error in energy spread decreases with smaller RMS transverse beam sizes. This trend was consistent across all tested energies and magnet configurations. To ensure accurate energy spread measurements, a small initial beam size is recommended. Specifically, for beams with a narrow initial energy spread, a transverse beam size below 1 mm is essential.
Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
On the Evidence for the Violation of the Equivalence Principle in Disk Galaxies
by
Corey Sargent, William Clark, Antonia Seifert, Alicia Mand, Emerson Rogers, Adam Lane, Alexandre Deur and Balša Terzić
Particles 2025, 8(3), 65; https://doi.org/10.3390/particles8030065 - 22 Jun 2025
Abstract
►▼
Show Figures
We examine the claimed observations of a gravitational external field effect (EFE) reported by Chae et al. We show that observations suggestive of the EFE can be interpreted without violating Einstein’s equivalence principle, namely from known correlations between the morphology, the environment, and
[...] Read more.
We examine the claimed observations of a gravitational external field effect (EFE) reported by Chae et al. We show that observations suggestive of the EFE can be interpreted without violating Einstein’s equivalence principle, namely from known correlations between the morphology, the environment, and dynamics of galaxies. While Chae et al.’s analysis provides a valuable attempt at a clear test of modified Newtonian dynamics, an evidently important topic, a re-analysis of the observational data does not permit us to confidently assess the presence of an EFE or to distinguish this interpretation from that proposed in this article.
Full article

Figure 1
Open AccessArticle
Beam Emittance and Bunch Length Diagnostics for the MIR-FEL Beamline at Chiang Mai University
by
Kittipong Techakaew, Kanlayaporn Kongmali, Siriwan Pakluea and Sakhorn Rimjaem
Particles 2025, 8(3), 64; https://doi.org/10.3390/particles8030064 - 21 Jun 2025
Abstract
The generation of high-quality mid-infrared free-electron laser (MIR-FEL) radiation depends critically on precise control of electron beam parameters, including energy, energy spread, transverse emittance, bunch charge, and bunch length. At the PBP-CMU Electron Linac Laboratory (PCELL), effective beam diagnostics are essential for optimizing
[...] Read more.
The generation of high-quality mid-infrared free-electron laser (MIR-FEL) radiation depends critically on precise control of electron beam parameters, including energy, energy spread, transverse emittance, bunch charge, and bunch length. At the PBP-CMU Electron Linac Laboratory (PCELL), effective beam diagnostics are essential for optimizing FEL performance. However, dedicated systems for direct measurement of transverse emittance and bunch length at the undulator entrance have been lacking. This paper addresses this gap by presenting the design, simulation, and analysis of diagnostic stations for accurate characterization of these parameters. A two-quadrupole emittance measurement system was developed, enabling independent control of beam-focusing in both transverse planes. An analytical model was formulated specifically for this configuration to enhance emittance reconstruction accuracy. Systematic error analysis was conducted using ASTRA beam dynamics simulations, incorporating 3D field maps from CST Studio Suite and fully including space-charge effects. Results show that transverse emittance values as low as 0.15 mm·mrad can be measured with less than 20% error when the initial RMS beam size is under 2 mm. Additionally, quadrupole misalignment effects were quantified, showing that alignment within ±0.95 mm limits systematic errors to below 33.3%. For bunch length measurements, a transition radiation (TR) station coupled with a Michelson interferometer was designed. Spectral and interferometric simulations reveal that transverse beam size and beam splitter properties significantly affect measurement accuracy. A 6% error due to transverse size was identified, while Kapton beam splitters introduced additional systematic distortions. In contrast, a 6 mm-thick silicon beam splitter enabled accurate, correction-free measurements. The finite size of the radiator was also found to suppress low-frequency components, resulting in up to 10.6% underestimation of bunch length. This work provides a practical and comprehensive diagnostic framework that accounts for multiple error sources in both transverse emittance and bunch length measurements. These findings contribute valuable insight for the beam diagnostics community and support improved control of beam quality in MIR FEL systems.
Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Symmetry, Galaxies, Universe, Particles, Astronomy
Dark Matter, Dark Energy and Cosmological Anisotropy
Topic Editors: Kazuharu Bamba, Panayiotis Stavrinos, Ivan De MartinoDeadline: 31 December 2026

Conferences
Special Issues
Special Issue in
Particles
Advances in Space AstroParticle Physics: Frontier Technologies for Particle Measurements in Space, 2025 Edition
Guest Editors: Matteo Duranti, Valerio VagelliDeadline: 15 October 2025
Special Issue in
Particles
Selected Papers from the 14th International Conference on New Frontiers in Physics (ICNFP 2025)
Guest Editors: Larissa Bravina, Sonia Kabana, Armen SedrakianDeadline: 20 November 2025
Special Issue in
Particles
Advances in QCD: Bridging Heavy-Ion Collisions and Electron Scattering at the Electron-Ion Collider
Guest Editor: Zhaozhong ShiDeadline: 30 November 2025
Special Issue in
Particles
Particles and Plasmas in Strong Fields
Guest Editors: David Blaschke, Tamás Biró, Ralf SchützholdDeadline: 30 November 2025
Topical Collections
Topical Collection in
Particles
Dark Matter and New Physics of Hidden Particles
Collection Editors: Valery E. Lyubovitskij, Dmitry V. Kirpichnikov, Alexey S. Zhevlakov