Previous Issue
Volume 8, September
 
 

Particles, Volume 8, Issue 4 (December 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
9 pages, 2093 KB  
Article
A Cosmic Radiation Modular Telescope on the Moon: The MoonRay Concept
by Pier Simone Marrocchesi
Particles 2025, 8(4), 86; https://doi.org/10.3390/particles8040086 - 27 Oct 2025
Viewed by 182
Abstract
The MoonRay project is carrying out a concept study of a permanent lunar cosmic-ray (CR) and gamma-ray observatory, in view of the implementation of habitats on our satellite. The idea is to build a modular telescope that will be able to overcome the [...] Read more.
The MoonRay project is carrying out a concept study of a permanent lunar cosmic-ray (CR) and gamma-ray observatory, in view of the implementation of habitats on our satellite. The idea is to build a modular telescope that will be able to overcome the limitations, in available power and weight, of the present generation of CR instruments in Low Earth Orbit, while carrying out high-energy gamma-ray observations from a vantage point at the South Pole of the Moon. An array of fully independent modules (towers), with limited individual size and mass, can provide an acceptance more than one order of magnitude larger than instruments in flight at present. The modular telescope is designed to be deployed progressively, during a series of lunar missions, while collecting meaningful scientific data at the intermediate stages of its implementation. The operational power will be made available by the facilities maintaining the lunar habitats. With a geometric factor close to 15 m2sr and about 8 times larger sensitive area than FERMI-LAT, MoonRay will be able to carry out a very rich observational program over a time span of a few decades with an energy reach of 10 PeV allowing the exploration of the CR “knee” and the observation of the Southern Sky with gamma rays well into the TeV scale. Each tower (of approximate size 20 cm × 20 cm ×100 cm) is equipped with three instruments. A combined Charge and Time-of-Flight detector (CD-ToF) can identify individual cosmic elements, leveraging on an innovative two-layered array of pixelated Low-Gain Avalanche Diode (LGAD) sensors, with sub-ns time resolution. The latter can achieve an unprecedented rejection power against backscattered radiation from the calorimeter. It is followed by a tracker, providing also photon conversion, and by a thick crystal calorimeter (55 radiation lengths, 3 proton interaction lengths at normal incidence) with an energy resolution of 30–40% (1–2%) for protons (electrons) and a proton/electron rejection in excess of 105. A time resolution close to 100 ps has been obtained, with prototypal arrays of 3 mm × 3 mm LGAD pixels, in a recent test campaign carried out at CERN with Pb beam fragments. Full article
Show Figures

Figure 1

18 pages, 1790 KB  
Article
The Kaon Off-Shell Generalized Parton Distributions and Transverse Momentum Dependent Parton Distributions
by Jin-Li Zhang
Particles 2025, 8(4), 85; https://doi.org/10.3390/particles8040085 - 25 Oct 2025
Viewed by 160
Abstract
We investigate the off-shell generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs) of kaons within the framework of the Nambu–Jona-Lasinio model, employing proper time regularization. Compared to the pion case, the off-shell effects in kaons are of similar magnitude, modifying [...] Read more.
We investigate the off-shell generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs) of kaons within the framework of the Nambu–Jona-Lasinio model, employing proper time regularization. Compared to the pion case, the off-shell effects in kaons are of similar magnitude, modifying the GPDs by about 10–25%, which is notable. The absence of crossing symmetry leads to odd powers in the x-moments of the off-shell GPDs, giving rise to new off-shell form factors. We analyze the relations among these kaon off-shell form factors by analogy with electromagnetic form factors. Our results extend the off-shell GPDs from pions to kaons and simultaneously address the associated off-shell form factors. We also compare the off-shell and on-shell gravitational form factors of the kaon. In addition, the off-shell kaon TMD shows a stronger dependence on the momentum fraction x than its on-shell counterpart. Full article
(This article belongs to the Special Issue Strong QCD and Hadron Structure)
Show Figures

Figure 1

11 pages, 440 KB  
Article
Pre-Supernova (Anti)Neutrino Emission Due to Weak-Interaction Reactions with Hot Nuclei
by Alan A. Dzhioev, Andrey V. Yudin, Natalia V. Dunina-Barkovskaya and Andrey I. Vdovin
Particles 2025, 8(4), 84; https://doi.org/10.3390/particles8040084 - 12 Oct 2025
Viewed by 252
Abstract
Reliable predictions of (anti)neutrino spectra and luminosities are essential for assessing the feasibility of detecting pre-supernova neutrinos. Using the stellar evolution code MESA, we calculate the (anti)neutrino spectra and luminosities under realistic conditions of temperature, density, and electron fraction. Our study includes (anti)neutrinos [...] Read more.
Reliable predictions of (anti)neutrino spectra and luminosities are essential for assessing the feasibility of detecting pre-supernova neutrinos. Using the stellar evolution code MESA, we calculate the (anti)neutrino spectra and luminosities under realistic conditions of temperature, density, and electron fraction. Our study includes (anti)neutrinos produced by both thermal processes and nuclear weak-interaction reactions. By comparing the results of the thermal quasiparticle random-phase approximation with the standard technique based on the effective Q-value method, we investigate how thermal effects influence the spectra and luminosities of emitted (anti)neutrinos. Our findings show that a thermodynamically consistent treatment of Gamow–Teller transitions in hot nuclei enhances both the energy luminosity and the average energies of the emitted (anti)neutrinos. Full article
(This article belongs to the Special Issue Infinite and Finite Nuclear Matter (INFINUM))
Show Figures

Figure 1

11 pages, 285 KB  
Article
Diquark Study in Quark Model
by Xinmei Zhu, Hongxia Huang and Jialun Ping
Particles 2025, 8(4), 83; https://doi.org/10.3390/particles8040083 - 2 Oct 2025
Viewed by 310
Abstract
To investigate diquark correlation in baryons, the baryon spectra with different light–heavy quark combinations are calculated using Gaussian expansion method within both the naive quark model and the chiral quark model. By computing the diquark energies and separations between any two quarks in [...] Read more.
To investigate diquark correlation in baryons, the baryon spectra with different light–heavy quark combinations are calculated using Gaussian expansion method within both the naive quark model and the chiral quark model. By computing the diquark energies and separations between any two quarks in baryons, we analyze the diquark effect in the ud-q/Q, us-Q, ss-q/Q, and QQ-q/Q systems (where q=u,d, or s; Q=c,b). The results show that diquark correlations exist in baryons. In particular, for qq-Q and QQ-q systems, the same type of diquark exhibits nearly identical energy and size across different baryons. In the orbital ground states of baryons, scalar–isoscalar diquarks have lower energy and a smaller size compared to vector–isovector diquark, which qualifies them as “good diquarks”. In QQ-q systems, a larger mass of Q leads to a smaller diquark separation and a more pronounced diquark effect. In qq-Q systems, the separation between the two light quarks remains larger than that between a light and a heavy quark, indicating that the internal structure of such diquarks must be taken into account. A comparison between the naive quark model and the chiral quark model reveals that the introduction of meson exchange slightly increases the diquark size in most systems. Full article
(This article belongs to the Special Issue Strong QCD and Hadron Structure)
9 pages, 4977 KB  
Article
A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators
by Francesco Dimiccoli, Francesco Maria Follega, Luigi Ernesto Ghezzer, Roberto Iuppa, Alessandro Lega, Riccardo Nicolaidis, Francesco Nozzoli, Ester Ricci, Enrico Verroi and Paolo Zuccon
Particles 2025, 8(4), 82; https://doi.org/10.3390/particles8040082 - 30 Sep 2025
Viewed by 465
Abstract
Lutetium–Yttrium Oxyorthosilicate (LYSO) crystals and EJ-200 plastic scintillators are widely recognized fast scintillating materials, valued for their high light yield and mechanical robustness, which make them well suited for demanding applications in high-energy physics and space research. Their non-proportional light response, along with [...] Read more.
Lutetium–Yttrium Oxyorthosilicate (LYSO) crystals and EJ-200 plastic scintillators are widely recognized fast scintillating materials, valued for their high light yield and mechanical robustness, which make them well suited for demanding applications in high-energy physics and space research. Their non-proportional light response, along with their non-linear behavior at low-energy X-rays, has been extensively investigated in previous studies, revealing potential systematic effects in existing measurements. In this work, light quenching in both scintillators is measured under charged-particle excitation. The results are interpreted using the modified Birks–Onsager model, which provides a theoretical framework for understanding the underlying quenching mechanisms, as well as a generalized logistic parametrization, offering experimentalists a useful tool to characterize the detector’s light yield and associated uncertainties. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop