nutrients-logo

Journal Browser

Journal Browser

Plant Bioactive Compounds for Health Benefits and Nutrition

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Phytochemicals and Human Health".

Deadline for manuscript submissions: closed (31 May 2020) | Viewed by 119343

Special Issue Editors

Special Issue Information

Dear Colleagues,

In this Special Issue of Nutrients, we would like to bring together papers dealing with the topic of plant bioactive compounds for health benefits and nutrition. In broad terms, the study of bioactive compounds, health, and nutrition may focus on different bioactive compounds present in vegetables, their intake, health effects, reduction of disease risk, as well as effects on disease biomarkers.

The average life expectancy has increased significantly with medical advances and economic progress, and with it, the concern about health and nutrition. Sedentary lifestyles and dietary factors contribute to the burden of illnesses and deaths. In fact, dietary factors are related to 4 of the 10 principal causes of death: coronary heart disease, some types of cancer, stroke, type 2 diabetes.

Besides, it is estimated that about 3 to 4 million cases of cancer could be avoided every year with an adequate and healthy food intake and nutrition, regular physical activity, and avoidance of obesity. In this context, functional foods, which contain components, nutrients, or bioactive compounds exerting selective beneficial effects on one or more functions of the organism, are widely distributed in the food market. Health claims are important value-added features for consumers and therefore for the food industry, since they can give a competitive advantage to a food product and can differentiate food products in the market. The EFSA accepts only health claims based on accepted scientific evidence. Therefore, further research is required to provide strong scientific evidence of the association between functional foods containing bioactive compounds and human health.

We welcome different types of manuscripts, including original research articles and up-to-date reviews (systematic reviews and meta-analyses).

Topics may include, but are not limited to, the associations of bioactive compounds present in foods, their intake, and nutritional biomarkers with reduction of disease risk, cancer, cardiovascular disease, obesity, high blood pressure, as well as other diseases.

Prof. Dr. Virginia Fernández-Ruiz
Prof. Dr. Patricia Morales
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Bioactive compounds
  • phenolics
  • antioxidants
  • carotenoids
  • health claims
  • nutrition
  • reduction of disease risk
  • DNA protection
  • proteins protection
  • lipids damage

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (18 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 708 KiB  
Article
Intake of Dietary Salicylates from Herbs and Spices among Adult Polish Omnivores and Vegans
by Danuta Gajewska, Paulina Katarzyna Kęszycka, Martyna Sandzewicz, Paweł Kozłowski and Joanna Myszkowska-Ryciak
Nutrients 2020, 12(9), 2727; https://doi.org/10.3390/nu12092727 - 6 Sep 2020
Cited by 6 | Viewed by 3798
Abstract
There is a growing body of evidence that a diet rich in bioactive compounds from herbs and spices has the ability to reduce the risk of chronic diseases. The consumption of herbs and spices is often overlooked in the studies on food intake. [...] Read more.
There is a growing body of evidence that a diet rich in bioactive compounds from herbs and spices has the ability to reduce the risk of chronic diseases. The consumption of herbs and spices is often overlooked in the studies on food intake. However, measurement of dietary intake of these products, as a source of bioactive compounds, including salicylates, has recently gained much significance. The aims of the study were (i) to assess the intake of herbs and spices at the individual level and (ii) to calculate the dietary salicylates intake from herbs and spices among adult omnivores and vegans. The study group consisted of 270 adults aged 19 to 67 years, including 205 women and 65 men. Among all, 208 individuals were following an omnivorous diet while 62 were vegans. A semi-quantitative food frequency questionnaire (FFQ) was designed to assess the habitual intake of 61 fresh and dried herbs and spices during the preceding three months. The five most frequently eaten herbs among omnivores were parsley, garlic, dill, marjoram and basil, while among vegans they were garlic, parsley, ginger, basil and dill. An average intake of all condiments included in the study was 22.4 ± 18.4 g/day and 25.8 ± 25.9 g/day for both omnivores and vegans, respectively (p = 0.007). Estimated medial salicylates intake was significantly higher among vegans (p = 0.000) and reached 5.82 mg/week vs. 3.13 mg/week for omnivores. Our study confirmed that herbs and spices are important sources of salicylates; however, the type of diet influenced their level in the diet. Vegans consume significantly more total salicylates than omnivores. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

14 pages, 2140 KiB  
Article
Omega-3 Eicosapentaenoic Acid (EPA) Rich Extract from the Microalga Nannochloropsis Decreases Cholesterol in Healthy Individuals: A Double-Blind, Randomized, Placebo-Controlled, Three-Month Supplementation Study
by Amanda Rao, David Briskey, Jakob O Nalley and Eneko Ganuza
Nutrients 2020, 12(6), 1869; https://doi.org/10.3390/nu12061869 - 23 Jun 2020
Cited by 36 | Viewed by 19888
Abstract
The aim of this trial is to assess the effect of Almega®PL on improving the Omega-3 Index, cardio-metabolic parameters, and other biomarkers in generally healthy individuals. The benefits of long-chain omega-3 fatty acids for cardiovascular health are primarily built upon mixtures [...] Read more.
The aim of this trial is to assess the effect of Almega®PL on improving the Omega-3 Index, cardio-metabolic parameters, and other biomarkers in generally healthy individuals. The benefits of long-chain omega-3 fatty acids for cardiovascular health are primarily built upon mixtures of docosahexaenoic (DHA) and eicosapentaenoic acids (EPA). Highly purified EPA therapy has proven to be particularly effective in the treatment of cardiovascular disease, but less is known about the benefits of EPA-only supplementation for the general healthy population. Almega®PL is a polar rich oil (>15%) derived from the microalga Nannochloropsis that contains EPA (>25%) with no DHA. Participants (n = 120) were given a capsule of 1 g/day of either Almega®PL or placebo for 12 weeks. Differences in the Omega-3 Index, cardiometabolic markers, and other general health indicators were measured at the baseline, six, and 12 weeks. Compared to the placebo group, Almega®PL supplementation significantly increased the Omega-3 Index and EPA concentration from 4.96 ± 0.90 and 0.82 ± 0.37% at the baseline to 5.75 ± 0.90 and 1.27 ± 0.36 at week 12, respectively. Very-low-density lipoprotein cholesterol (VLDL) decreased by 25%, which resulted in a significant decrease in total cholesterol compared to the placebo. Interestingly, the decrease in VLDL was not associated with an increase in LDL, which seems to be a benefit associated with EPA-only based formulations. Collectively, these results show that Almega®PL provides a natural EPA-only option to increase EPA and manage cholesterol levels in the general population. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Figure 1

18 pages, 1515 KiB  
Article
Pain Bloc-R Alleviates Unresolved, Non-Pathological Aches and Discomfort in Healthy Adults—A Randomized, Double-Blind, Placebo-Controlled, Crossover Study
by Malkanthi Evans, Abdul M. Sulley, David C. Crowley, Jamie Langston and Najla Guthrie
Nutrients 2020, 12(6), 1831; https://doi.org/10.3390/nu12061831 - 19 Jun 2020
Cited by 2 | Viewed by 3404
Abstract
The lack of effective treatment for chronic discomfort without negative side effects highlights the need for alternative treatments. Pain Bloc-R is a natural health product composed of vitamins B6, B12, D, white willow bark extract, Angelica root extract, acetyl [...] Read more.
The lack of effective treatment for chronic discomfort without negative side effects highlights the need for alternative treatments. Pain Bloc-R is a natural health product composed of vitamins B6, B12, D, white willow bark extract, Angelica root extract, acetyl L-carnitine HCl, caffeine, L-theanine, Benfotiamine, and L-tetrahydropalmatine. The objective of this study was to compare the effects of Pain Bloc-R, acetaminophen, and placebo on unresolved aches and discomfort as assessed by the brief pain inventory (BPI) and modified Cornell musculoskeletal discomfort questionnaires. This randomized, double-blind, placebo-controlled, crossover study consisted of three 7-day periods with Pain Bloc-R, acetaminophen, or placebo, each separated by a 7-day washout. Twenty-seven healthy adults (ages 22–63 years) were randomized to receive the three interventions in different sequences. The BPI “pain at its worst” scores were significantly lower when participants took Pain Bloc-R than when they took acetaminophen (21.8% vs. 9.8% decrease, p = 0.026) after seven days of supplementation. Pain Bloc-R achieved a significant improvement in the “pain at its least” score, significantly decreased the interference of discomfort in walking, and significantly decreased musculoskeletal discomfort total scores (34%, p = 0.040) after seven days. In a post hoc subgroup analysis based on age and gender, male participants ≤45 years taking Pain Bloc-R reported significant reductions in pain severity and pain interference vs. acetaminophen. Pain Bloc-R performed as well as acetaminophen in managing unresolved non-pathological pain in otherwise healthy individuals. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Figure 1

16 pages, 3492 KiB  
Article
Aqueous Fraction from Hibiscus sabdariffa Relaxes Mesenteric Arteries of Normotensive and Hypertensive Rats through Calcium Current Reduction and Possibly Potassium Channels Modulation
by Anas M.A. Alsayed, Bei Li Zhang, Pierre Bredeloux, Leslie Boudesocque-Delaye, Angèle Yu, Nicolas Peineau, Cécile Enguehard-Gueiffier, Elhadi M. Ahmed, Côme Pasqualin and Véronique Maupoil
Nutrients 2020, 12(6), 1782; https://doi.org/10.3390/nu12061782 - 15 Jun 2020
Cited by 14 | Viewed by 4656
Abstract
Background/Objectives: Hibiscus sabdariffa L. (H. sabdariffa (HS)) extract has a vascular relaxant effect on isolated rat thoracic aorta, but data on small resistance arteries, which play an important role on the development of hypertension, are still missing. The purposes of this study [...] Read more.
Background/Objectives: Hibiscus sabdariffa L. (H. sabdariffa (HS)) extract has a vascular relaxant effect on isolated rat thoracic aorta, but data on small resistance arteries, which play an important role on the development of hypertension, are still missing. The purposes of this study were (1) to assess the effect on isolated mesenteric arteries (MA) from normotensive (Wistar and Wistar-Kyoto (WKY)) and spontaneous hypertensive rats (SHR); (2) to elucidate the mechanism(s) of action underling the relaxant effect in light of bioactive components. Methods: Vascular effects of HS aqueous fraction (AF) on isolated MA rings, as well as its mechanisms of action, were assessed using the contractility and intracellular microelectrode technique. The patch clamp technique was used to evaluate the effect of HS AF on the L-type calcium current. Extraction and enrichment of AF were carried out using liquid–liquid extraction, and the yield was analyzed using HPLC. Results: The HS AF induced a concentration-dependent relaxant effect on MA rings of SHR (EC50 = 0.83 ± 0.08 mg/mL), WKY (EC50 = 0.46 ± 0.04 mg/mL), and Wistar rats (EC50 = 0.44 ± 0.08 mg/mL) pre-contracted with phenylephrine (10 µM). In Wistar rats, the HS AF maximum relaxant effect was not modified after endothelium removal or when a guanylate cyclase inhibitor (ODQ, 10 µM) and a selective β2-adrenergic receptor antagonist (ICI-118551, 1 µM) were incubated with the preparation. Otherwise, it was reduced by 34.57 ± 10.66% when vascular rings were pre-contracted with an 80 mM [K+] solution (p < 0.001), which suggests an effect on ionic channels. HS AF 2 mg/mL significantly decreased the peak of the L-type calcium current observed in cardiac myocytes by 24.4%. Moreover, though the vasorelaxant effect of HS, AF was reduced by 27% when the nonselective potassium channels blocker (tetraethylammonium (TEA) 20 mM) was added to the bath (p < 0.01). The extract did not induce a membrane hyperpolarization of smooth muscle cells, which might suggest an absence of a direct effect on background potassium current. Conclusion: These results highlight that the antihypertensive effect of HS probably involves a vasorelaxant effect on small resistance arteries, which is endothelium independent. L-type calcium current reduction contributes to this effect. The results could also provide a link between the vasorelaxant effect and the bioactive compounds, especially anthocyanins. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

15 pages, 3509 KiB  
Article
Extra Virgin Olive Oil Phenol Extracts Exert Hypocholesterolemic Effects through the Modulation of the LDLR Pathway: In Vitro and Cellular Mechanism of Action Elucidation
by Carmen Lammi, Maria Bellumori, Lorenzo Cecchi, Martina Bartolomei, Carlotta Bollati, Maria Lisa Clodoveo, Filomena Corbo, Anna Arnoldi and Nadia Mulinacci
Nutrients 2020, 12(6), 1723; https://doi.org/10.3390/nu12061723 - 9 Jun 2020
Cited by 36 | Viewed by 5090
Abstract
This study was aimed at investigating the hypocholesterolemic effects of extra virgin olive oil (EVOO) phenols and the mechanisms behind the effect. Two phenolic extracts were prepared from EVOO of different cultivars and analyzed using the International Olive Council (IOC) official method for [...] Read more.
This study was aimed at investigating the hypocholesterolemic effects of extra virgin olive oil (EVOO) phenols and the mechanisms behind the effect. Two phenolic extracts were prepared from EVOO of different cultivars and analyzed using the International Olive Council (IOC) official method for total phenols, a recently validated hydrolytic procedure for total hydroxytyrosol and tyrosol, and 1H-NMR analysis in order to assess their secoiridoid profiles. Both of the extracts inhibited in vitro the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in a dose-dependent manner. After the treatment of human hepatic HepG2 cells (25 µg/mL), they increased the low-density lipoprotein (LDL) receptor protein levels through the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, leading to a better ability of HepG2 cells to uptake extracellular LDL molecules with a final hypocholesterolemic effect. Moreover, both of the extracts regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Unlike pravastatin, they did not produce any unfavorable effect on proprotein convertase subtilisin/kexin 9 (PCSK9) protein level. Finally, the fact that extracts with different secoiridoid profiles induce practically the same biological effects suggests that the hydroxytyrosol and tyrosol derivatives may have similar roles in hypocholesterolemic activity. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

20 pages, 1173 KiB  
Article
Further Evidence of Benefits to Mood and Working Memory from Lipidated Curcumin in Healthy Older People: A 12-Week, Double-Blind, Placebo-Controlled, Partial Replication Study
by Katherine H. M. Cox, David J. White, Andrew Pipingas, Kaylass Poorun and Andrew Scholey
Nutrients 2020, 12(6), 1678; https://doi.org/10.3390/nu12061678 - 4 Jun 2020
Cited by 38 | Viewed by 13333
Abstract
Curcumin (a flavonoid isolated from turmeric) affects several processes involved in neurocognitive aging. We have previously reported that short term (4-weeks) administration of a highly bioavailable curcumin preparation (Longvida©) improved working memory and reduced fatigue and stress reactivity in a healthy older cohort. [...] Read more.
Curcumin (a flavonoid isolated from turmeric) affects several processes involved in neurocognitive aging. We have previously reported that short term (4-weeks) administration of a highly bioavailable curcumin preparation (Longvida©) improved working memory and reduced fatigue and stress reactivity in a healthy older cohort. The present trial (ACTRN12616000484448) was a partial replication study, evaluating similar effects at 4 and 12-weeks Longvida© supplementation. A double-blind, placebo-controlled, parallel-groups trial was conducted. Eighty participants aged 50–80 years (mean = 68.1, SD = 6.34) were randomised to receive Longvida© (400 mg daily containing 80 mg curcumin) or a matching placebo. Assessment took place at baseline then following 4 and 12 weeks treatment. Outcome measures included cognitive performance, mood and biomarkers. Compared with placebo, curcumin was associated with several significant effects. These included better working memory performance at 12-weeks (Serial Threes, Serial Sevens and performance on a virtual Morris Water Maze), and lower fatigue scores on the Profile of Mood States (POMS) at both 4 and 12-weeks, and of tension, anger, confusion and total mood disturbance at 4-weeks only. The curcumin group had significantly elevated blood glucose. These results confirm that Longvida© improves aspects of mood and working memory in a healthy older cohort. The pattern of results is consistent with improvements in hippocampal function and may hold promise for alleviating cognitive decline in some populations. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Figure 1

20 pages, 6041 KiB  
Article
Pentadecanoic Acid, an Odd-Chain Fatty Acid, Suppresses the Stemness of MCF-7/SC Human Breast Cancer Stem-Like Cells through JAK2/STAT3 Signaling
by Ngoc Bao To, Yen Thi-Kim Nguyen, Jeong Yong Moon, Meran Keshawa Ediriweera and Somi Kim Cho
Nutrients 2020, 12(6), 1663; https://doi.org/10.3390/nu12061663 - 3 Jun 2020
Cited by 70 | Viewed by 10919
Abstract
Saturated fatty acids possess few health benefits compared to unsaturated fatty acids. However, increasing experimental evidence demonstrates the nutritionally beneficial role of odd-chain saturated fatty acids in human health. In this study, the anti-cancer effects of pentadecanoic acid were evaluated in human breast [...] Read more.
Saturated fatty acids possess few health benefits compared to unsaturated fatty acids. However, increasing experimental evidence demonstrates the nutritionally beneficial role of odd-chain saturated fatty acids in human health. In this study, the anti-cancer effects of pentadecanoic acid were evaluated in human breast carcinoma MCF-7/stem-like cells (SC), a cell line with greater mobility, invasiveness, and cancer stem cell properties compared to the parental MCF-7 cells. Pentadecanoic acid exerted selective cytotoxic effects in MCF-7/SC compared to in the parental cells. Moreover, pentadecanoic acid reduced the stemness of MCF-7/SC and suppressed the migratory and invasive ability of MCF-7/SC as evidenced by the results of flow cytometry, a mammosphere formation assay, an aldehyde dehydrogenase activity assay, and Western blot experiments conducted to analyze the expression of cancer stem cell markers—CD44, β-catenin, MDR1, and MRP1—and epithelial–mesenchymal transition (EMT) markers—snail, slug, MMP9, and MMP2. In addition, pentadecanoic acid suppressed interleukin-6 (IL-6)-induced JAK2/STAT3 signaling, induced cell cycle arrest at the sub-G1 phase, and promoted caspase-dependent apoptosis in MCF-7/SC. These findings indicate that pentadecanoic acid can serve as a novel JAK2/STAT3 signaling inhibitor in breast cancer cells and suggest the beneficial effects of pentadecanoic acid-rich food intake during breast cancer treatments. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Figure 1

15 pages, 612 KiB  
Article
Potential Nutrition and Health Claims in Deastringed Persimmon Fruits (Diospyros kaki L.), Variety ‘Rojo Brillante’, PDO ’Ribera del Xúquer’
by Laura Domínguez Díaz, Eva Dorta, Sarita Maher, Patricia Morales, Virginia Fernández-Ruiz, Montaña Cámara and María-Cortes Sánchez-Mata
Nutrients 2020, 12(5), 1397; https://doi.org/10.3390/nu12051397 - 13 May 2020
Cited by 18 | Viewed by 5180
Abstract
In Europe, nutrition and health claims made on food must be based on scientific evidence, which means a comprehensive evaluation by the European Food Safety Authority (EFSA) prior to authorisation. Processed foods are subject to numerous claims derived from the presence of bioactive [...] Read more.
In Europe, nutrition and health claims made on food must be based on scientific evidence, which means a comprehensive evaluation by the European Food Safety Authority (EFSA) prior to authorisation. Processed foods are subject to numerous claims derived from the presence of bioactive compounds; however, natural food products, often the original sources of those compounds, are not habitually the subject of these claims. Although the consumption of persimmon fruit has important health benefits, up to date no specific health claims are authorised for this fruit. In this work, ‘Rojo Brillante’ persimmon fruits (Diospyros kaki L.), Protected Designation of Origin (PDO) ‘Ribera del Xúquer’ were characterized regarding the presence of fiber (soluble and insoluble), vitamin C (ascorbic and dehydroascorbic acids), carotenoids (neoxanthin, violaxanthin, β-cryptoxanthin, lycopene, β- carotene) and mineral elements (Fe, Cu, Zn, Mn, Ca, Mg, Na, K). Different fruit batches harvested in different seasons were analyzed by standardized analytical methods (Association of Official Analytical Chemists, AOAC), high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and atomic absorption spectroscopy. Based on the results, Persimon® is potentially able to show two nutrition claims “Source of fiber” and “Sodium-free/salt-free”. This work could set the ground for future studies and to start considering natural food products as candidates for the use of approved claims. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

12 pages, 2890 KiB  
Article
Cyanidin Attenuates Methylglyoxal-Induced Oxidative Stress and Apoptosis in INS-1 Pancreatic β-Cells by Increasing Glyoxalase-1 Activity
by Tanyawan Suantawee, Thavaree Thilavech, Henrique Cheng and Sirichai Adisakwattana
Nutrients 2020, 12(5), 1319; https://doi.org/10.3390/nu12051319 - 6 May 2020
Cited by 17 | Viewed by 3745
Abstract
Recently, the mechanisms responsible for anti-glycation activity of cyanidin and its derivatives on the inhibition of methylglyoxal (MG)-induced protein glycation and advanced glycation-end products (AGEs) as well as oxidative DNA damage were reported. In this study, we investigated the protective effect of cyanidin [...] Read more.
Recently, the mechanisms responsible for anti-glycation activity of cyanidin and its derivatives on the inhibition of methylglyoxal (MG)-induced protein glycation and advanced glycation-end products (AGEs) as well as oxidative DNA damage were reported. In this study, we investigated the protective effect of cyanidin against MG-induced oxidative stress and apoptosis in rat INS-1 pancreatic β-cells. Exposure of cells to cytotoxic levels of MG (500 µM) for 12 h caused a significant reduction in cell viability. However, the pretreatment of cells with cyanidin alone (6.25–100 μM) for 12 h, or cotreatment of cells with cyanidin (3.13–100 μM) and MG, protected against cell cytotoxicity. In the cotreatment condition, cyanidin (33.3 and 100 μM) also decreased MG-induced apoptosis as determined by caspase-3 activity. Furthermore, INS-1 cells treated with MG increased the generation of reactive oxygen species (ROS) during a 6 h exposure. The MG-induced increase in ROS production was inhibited by cyanidin (33.3 and 100 μM) after 3 h stimulation. Furthermore, MG diminished the activity of glyoxalase 1 (Glo-1) and its gene expression as well as the level of total glutathione. In contrast, cyanidin reversed the inhibitory effect of MG on Glo-1 activity and glutathione levels. Interestingly, cyanidin alone was capable of increasing Glo-1 activity and glutathione levels without affecting Glo-1 mRNA expression. These findings suggest that cyanidin exerts a protective effect against MG-induced oxidative stress and apoptosis in pancreatic β-cells by increasing the activity of Glo-1. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Figure 1

18 pages, 7226 KiB  
Article
Green Tea Polyphenol EGCG Attenuates MDSCs-mediated Immunosuppression through Canonical and Non-Canonical Pathways in a 4T1 Murine Breast Cancer Model
by Ping Xu, Feng Yan, Yueling Zhao, Xiangbo Chen, Shili Sun, Yuefei Wang and Le Ying
Nutrients 2020, 12(4), 1042; https://doi.org/10.3390/nu12041042 - 10 Apr 2020
Cited by 46 | Viewed by 5441
Abstract
Several studies in the past decades have reported anti-tumor activity of the bioactive compounds extracted from tea leaves, with a focus on the compound epigallocatechin-3-gallate (EGCG). However, further investigations are required to unravel the underlying mechanisms behind the anti-tumor activity of EGCG. In [...] Read more.
Several studies in the past decades have reported anti-tumor activity of the bioactive compounds extracted from tea leaves, with a focus on the compound epigallocatechin-3-gallate (EGCG). However, further investigations are required to unravel the underlying mechanisms behind the anti-tumor activity of EGCG. In this study, we demonstrate that EGCG significantly inhibits the growth of 4T1 breast cancer cells in vitro and in vivo. EGCG ameliorated immunosuppression by significantly decreasing the accumulation of myeloid-derived suppressor cells (MDSCs) and increasing the proportions of CD4+ and CD8+ T cells in spleen and tumor sites in 4T1 breast tumor-bearing mice. Surprisingly, a low dose of EGCG (0.5–5 μg/mL) effectively reduced the cell viability and increased the apoptosis rate of MDSCs in vitro. EGCG down-regulated the canonical pathways in MDSCs, mainly through the Arg-1/iNOS/Nox2/NF-κB/STAT3 signaling pathway. Moreover, transcriptomic analysis suggested that EGCG also affected the non-canonical pathways in MDSCs, such as ECM–receptor interaction and focal adhesion. qRT-PCR further validated that EGCG restored nine key genes in MDSCs, including Cxcl3, Vcan, Col4a1, Col8a1, Oasl2, Mmp12, Met, Itsnl and Acot1. Our results provide new insight into the mechanism of EGCG-associated key pathways/genes in MDSCs in the murine breast tumor model. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

12 pages, 4844 KiB  
Article
Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially Via AMPK Activation
by Jae Min Lee, Sun Sil Choi, Mi Hyeon Park, Hyunduk Jang, Yo Han Lee, Keon Woo Khim, Sei Ryang Oh, Jiyoung Park, Hyung Won Ryu and Jang Hyun Choi
Nutrients 2020, 12(3), 773; https://doi.org/10.3390/nu12030773 - 14 Mar 2020
Cited by 15 | Viewed by 4350
Abstract
The chronic low-grade inflammation in adipose tissue plays a causal role in obesity-induced insulin resistance and its associated pathophysiological consequences. In this study, we investigated the effects of extracts of Broussonetia papyrifera root bark (PRE) and its bioactive components on inflammation and insulin [...] Read more.
The chronic low-grade inflammation in adipose tissue plays a causal role in obesity-induced insulin resistance and its associated pathophysiological consequences. In this study, we investigated the effects of extracts of Broussonetia papyrifera root bark (PRE) and its bioactive components on inflammation and insulin sensitivity. PRE inhibited TNF-α-induced NF-κB transcriptional activity in the NF-κB luciferase assay and pro-inflammatory genes’ expression by blocking phosphorylation of IκB and NF-κB in 3T3-L1 adipocytes, which were mediated by activating AMPK. Ten-week-high fat diet (HFD)-fed C57BL6 male mice treated with PRE had improved glucose intolerance and decreased inflammation in adipose tissue, as indicated by reductions in NF-κB phosphorylation and pro-inflammatory genes’ expression. Furthermore, PRE activated AMP-activated protein kinase (AMPK) and reduced lipogenic genes’ expression in both adipose tissue and liver. Finally, we identified broussoflavonol B (BF) and kazinol J (KJ) as bioactive constituents to suppress pro-inflammatory responses via activating AMPK in 3T3-L1 adipocytes. Taken together, these results indicate the therapeutic potential of PRE, especially BF or KJ, in metabolic diseases such as obesity and type 2 diabetes. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

14 pages, 2692 KiB  
Article
Unique Triterpenoid of Jujube Root Protects Cisplatin-induced Damage in Kidney Epithelial LLC-PK1 Cells via Autophagy Regulation
by Dahae Lee, Kyo Bin Kang, Hyun Woo Kim, Jung Sik Park, Gwi Seo Hwang, Ki Sung Kang, Sungyoul Choi, Noriko Yamabe and Ki Hyun Kim
Nutrients 2020, 12(3), 677; https://doi.org/10.3390/nu12030677 - 2 Mar 2020
Cited by 10 | Viewed by 4394
Abstract
Chronic exposure to cisplatin is associated with irreversible kidney impairment. In this present study, we explored the protective effects of 3-dehydroxyceanothetric acid 2-methyl ester (3DC2ME) isolated from roots of jujube (Ziziphus jujuba, Rhamnaceae) against cisplatin-induced damage in vitro. In kidney epithelial [...] Read more.
Chronic exposure to cisplatin is associated with irreversible kidney impairment. In this present study, we explored the protective effects of 3-dehydroxyceanothetric acid 2-methyl ester (3DC2ME) isolated from roots of jujube (Ziziphus jujuba, Rhamnaceae) against cisplatin-induced damage in vitro. In kidney epithelial LLC-PK1 cells, western blotting and staining with specific autophagy epifluorescent dye CytoID were used to determine the molecular pathways involving autophagy. Treatment with 3DC2ME reduced the increased Cyto-ID-stained autophagic vesicles and reversed the protein expressions of 5’ AMP-activated protein kinase subunit β-1 (AMPK)/mammalian target of rapamycin (mTOR)-dependent signaling pathway in cisplatin-induced cell death. Additionally, treatment with autophagy inhibitor 3-methyladenine (3-MA) and with or without 3DC2ME attenuated the cisplatin-induced apoptosis. Although further research is necessary to substantiate the effects, we evaluated the potential mechanism of action of 3DC2ME as an adjuvant for cancer patients. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

16 pages, 2423 KiB  
Article
Influence of Pomace Matrix and Cyclodextrin Encapsulation on Olive Pomace Polyphenols’ Bioaccessibility and Intestinal Permeability
by Kristina Radić, Bisera Jurišić Dukovski and Dubravka Vitali Čepo
Nutrients 2020, 12(3), 669; https://doi.org/10.3390/nu12030669 - 29 Feb 2020
Cited by 17 | Viewed by 3317
Abstract
Olive pomace is a rich source of biologically active compounds, mainly polyphenols. Recently, an efficient and sustainable cyclodextrin (CD)-enhanced extraction was developed. It enabled a relatively simple formulation of high-quality olive pomace extracts (OPEs) that can be used as alternative sources of olive-derived [...] Read more.
Olive pomace is a rich source of biologically active compounds, mainly polyphenols. Recently, an efficient and sustainable cyclodextrin (CD)-enhanced extraction was developed. It enabled a relatively simple formulation of high-quality olive pomace extracts (OPEs) that can be used as alternative sources of olive-derived polyphenols in the nutrition and pharma industries. However, biological effects and nutraceutical potential of OPEs are primarily limited by generally low oral bioavailability of major polyphenols (hydroxytyrosol and its derivatives) that can be significantly influenced by OPE matrix and the presence of CDs in formulation. The major goal of this research was to investigate the impact of complex matrix and different types of CDs on gastrointestinal stability and intestinal permeability of major OPE polyphenols, and provide additional data about mechanisms of absorption and antioxidant activity in gut lumen. Obtained results showed high bioaccessibility but relatively low permeability of OPE polyphenols, which was negatively affected by OPE matrix. CDs improved antioxidant efficiency of tested OPEs and tyrosol gastrointestinal stability. Effects of CDs on permeability and the metabolism of particular OPE polyphenols were CD- and polyphenol-specific. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Figure 1

15 pages, 738 KiB  
Article
Potential Health Claims of Durum and Bread Wheat Flours as Functional Ingredients
by María Ciudad-Mulero, Lillian Barros, Ângela Fernandes, Isabel C.F.R. Ferreira, Mª Jesús Callejo, Mª Cruz Matallana-González, Virginia Fernández-Ruiz, Patricia Morales and José M. Carrillo
Nutrients 2020, 12(2), 504; https://doi.org/10.3390/nu12020504 - 17 Feb 2020
Cited by 28 | Viewed by 4536
Abstract
Wheat is an important cereal with a key role in human nutrition. In this study, dietary fiber (DF) and arabinoxylans of different durum (Triticum turgidum ssp. Durum L.) and bread (Triticum aestivum L.) wheat flours were analyzed in order to point [...] Read more.
Wheat is an important cereal with a key role in human nutrition. In this study, dietary fiber (DF) and arabinoxylans of different durum (Triticum turgidum ssp. Durum L.) and bread (Triticum aestivum L.) wheat flours were analyzed in order to point out their potential nutritional and health claims allege according to the current European regulation (Regulation (EU) No 432/2012). Moreover, other bioactive compounds (phenolics and tocopherols) were quantified as a first approach to their phytochemical composition in the analyzed wheat varieties. DF was analyzed following AOAC enzymatic-gravimetric methods; arabinoxylans and total phenols were quantified by colorimetric methods; tocopherols were determined by HPLC; antioxidant activity was evaluated using three different in vitro assays. Insoluble DF was the prevailing fraction in all analyzed samples. Water extractable arabinoxylans were higher in durum wheat flours. Whole flours contained higher total phenolics compounds. Alpha-tocopherol was the major isoform. Whole flours showed higher antioxidant properties. According to the obtained results, it is possible to allege all approved health claims referred to wheat, since all analyzed samples, especially whole flour and bran fraction, showed potential health benefits, as functional ingredients or functional foods, related with their phytochemical composition. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

20 pages, 3071 KiB  
Article
Chemical Profile, Antioxidative, and Gut Microbiota Modulatory Properties of Ganpu Tea: A Derivative of Pu-erh Tea
by Yuying Zheng, Xuan Zeng, Tingting Chen, Wei Peng and Weiwei Su
Nutrients 2020, 12(1), 224; https://doi.org/10.3390/nu12010224 - 15 Jan 2020
Cited by 38 | Viewed by 4164
Abstract
Ganpu tea is an emerging tea drink produced from Pu-erh tea and the pericarp of Citrus reticulate Chachi (GCP). Recently, it has been increasingly favored by consumers due to the potential health effects and special taste. However, information concerning its chemical profile and [...] Read more.
Ganpu tea is an emerging tea drink produced from Pu-erh tea and the pericarp of Citrus reticulate Chachi (GCP). Recently, it has been increasingly favored by consumers due to the potential health effects and special taste. However, information concerning its chemical profile and biological activities is scarce. In this work, a total of 92 constituents were identified in hot-water extracts of Ganpu tea with ultra-high performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS). Moreover, the antioxidative and gut microbiota modulatory properties of Ganpu tea were investigated in rats after long-term dietary consumption. Ganpu tea and GCP could significantly enhance the activities of superoxide dismutase (SOD) by 13.4% (p < 0.05) and 15.1% (p < 0.01), as well as the activities of glutathione peroxidase (GSH-Px) by 16.3% (p < 0.01) and 20.5% (p < 0.01), respectively. Both showed better antioxidant capacities than Pu-erh tea. Ganpu tea increased the abundance of Bifidobacterium, Lactobacillus, and Lactococcus, suggesting the potential of Ganpu tea in modulating the gut microbiota to benefit human health. The obtained results provide essential information for further investigation of Ganpu tea. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

Review

Jump to: Research

16 pages, 2032 KiB  
Review
Phytochemistry, Traditional Use and Pharmacological Activity of Picrasma quassioides: A Critical Reviews
by Muhammad Daniel Hakim Mohd Jamil, Muhammad Taher, Deny Susanti, Md Atiar Rahman and Zainul Amiruddin Zakaria
Nutrients 2020, 12(9), 2584; https://doi.org/10.3390/nu12092584 - 26 Aug 2020
Cited by 16 | Viewed by 4221
Abstract
Picrasma quassioides is a member of the Simaroubaceae family commonly grown in the regions of Asia, the Himalayas, and India and has been used as a traditional herbal medicine to treat various illnesses such as fever, gastric discomfort, and pediculosis. This study aims [...] Read more.
Picrasma quassioides is a member of the Simaroubaceae family commonly grown in the regions of Asia, the Himalayas, and India and has been used as a traditional herbal medicine to treat various illnesses such as fever, gastric discomfort, and pediculosis. This study aims to critically review the presence of phytochemicals in P. quassioides and correlate their pharmacological activities with the significance of its use as traditional medicine. Data were collected by reviewing numerous scientific articles from several journal databases on the pharmacological activities of P. quassioides using certain keywords. As a result, approximately 94 phytochemicals extracted from P. quassioides were found to be associated with quassinoids, β-carbolines and canthinones. These molecules exhibited various pharmacological benefits such as anti-inflammatory, antioxidant, anti-cancer, anti-microbial, and anti-parasitic activities which help to treat different diseases. However, P. quassioides were also found to have several toxicity effects in high doses, although the evidence regarding these effects is limited in proving its safe use and efficacy as herbal medicine. Accordingly, while it can be concluded that P. quassioides may have many potential pharmacological benefits with more phytochemistry discoveries, further research is required to determine its real value in terms of quality, safety, and efficacy of use. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Figure 1

23 pages, 4159 KiB  
Review
Understanding the Composition, Biosynthesis, Accumulation and Transport of Flavonoids in Crops for the Promotion of Crops as Healthy Sources of Flavonoids for Human Consumption
by Yee-Shan Ku, Ming-Sin Ng, Sau-Shan Cheng, Annie Wing-Yi Lo, Zhixia Xiao, Tai-Sun Shin, Gyuhwa Chung and Hon-Ming Lam
Nutrients 2020, 12(6), 1717; https://doi.org/10.3390/nu12061717 - 8 Jun 2020
Cited by 84 | Viewed by 7048
Abstract
Flavonoids are a class of polyphenolic compounds that naturally occur in plants. Sub-groups of flavonoids include flavone, flavonol, flavanone, flavanonol, anthocyanidin, flavanol and isoflavone. The various modifications on flavonoid molecules further increase the diversity of flavonoids. Certain crops are famous for being enriched [...] Read more.
Flavonoids are a class of polyphenolic compounds that naturally occur in plants. Sub-groups of flavonoids include flavone, flavonol, flavanone, flavanonol, anthocyanidin, flavanol and isoflavone. The various modifications on flavonoid molecules further increase the diversity of flavonoids. Certain crops are famous for being enriched in specific flavonoids. For example, anthocyanins, which give rise to a purplish color, are the characteristic compounds in berries; flavanols are enriched in teas; and isoflavones are uniquely found in several legumes. It is widely accepted that the antioxidative properties of flavonoids are beneficial for human health. In this review, we summarize the classification of the different sub-groups of flavonoids based on their molecular structures. The health benefits of flavonoids are addressed from the perspective of their molecular structures. The flavonoid biosynthesis pathways are compared among different crops to highlight the mechanisms that lead to the differential accumulation of different sub-groups of flavonoids. In addition, the mechanisms and genes involved in the transport and accumulation of flavonoids in crops are discussed. We hope the understanding of flavonoid accumulation in crops will guide the proper balance in their consumption to improve human health. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

14 pages, 595 KiB  
Review
Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa)
by Monika Staszowska-Karkut and Małgorzata Materska
Nutrients 2020, 12(2), 463; https://doi.org/10.3390/nu12020463 - 12 Feb 2020
Cited by 86 | Viewed by 9589
Abstract
Currently, the incidence of lifestyle diseases is increasing due to inappropriate nutrition and environmental pollution. To prevent these diseases, various groups of bioactive compounds are needed with a broad spectrum of action and without adverse side effects. Polyphenolic compounds are the most widely [...] Read more.
Currently, the incidence of lifestyle diseases is increasing due to inappropriate nutrition and environmental pollution. To prevent these diseases, various groups of bioactive compounds are needed with a broad spectrum of action and without adverse side effects. Polyphenolic compounds are the most widely studied group of this type of compounds. They occur widely in plants, but their content depends on many factors, including the type of plant, climatic conditions, and the date of harvest. The spectrum of bioactivity of phenolic compounds is determined by their chemical structure, concentration, and interaction with other compounds. Traditional recipes have been studied to search for active plant ingredients. Leaves of shrubs and fruit trees were used in folk medicine as a panacea for many diseases and have been forgotten with time, but their benefits are now being rediscovered. In recent years, much new information about biological activity of phenolic compounds from berry bushes (black currant, raspberry, and aronia) was published. This was reviewed and discussed in this article. The mineral content of their leaves was also summarized because minerals constitute a significant component of plant infusions. It has been shown that high antioxidant and biological activity of leaf extracts results from the presence of active phenolic compounds, which occur in definitely higher amounts than in fruits. Therefore, the leaves of berry bushes seem to be a promising source of substances that can be used as replacements for synthetic agents in the treatment and prevention of lifestyle diseases. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds for Health Benefits and Nutrition)
Show Figures

Graphical abstract

Back to TopTop