Special Issue "Computational Modeling and Simulation for Nanomaterials, Nanotechnology, and Nanoscience"

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Theory and Simulation of Nanostructures".

Deadline for manuscript submissions: closed (18 October 2020).

Special Issue Editors

Prof. Dr. Walter Lacarbonara
Website
Guest Editor
Department of Structural Engineering, Sapienza University of Rome, Rome, Italy
Interests: nonlinear dynamics and stability; nonlinear dynamics for design; experimental nonlinear dynamics; carbon nanotube composites; smart materials and devices; nonlinear vibration absorbers; nonlinear system identification
Prof. Dr. Giovanni Formica
Website
Guest Editor
Department of Architecture, University of “Roma Tre”, Rome, Italy
Interests: nonlinear dynamics and stability; carbon nanotube composites; multi-scale, computational mechanics and multiphysics; non-standard Finite Element formulation and implementation; advanced numerical solvers for nonlinear problems; meta-heuristic algorithms for optimization

Special Issue Information

Dear Colleagues,

Nanoscience and nanotechnology emerged in the last decades at the forefront of a wide array of research fields, due to the highly challenging and surprising properties of nanomaterials and nanosystems. These properties allow nanomaterials in different forms (0D, 1D, 2D, 3D) and phases or nanosystems to be utilised in a wealth of applications, ranging from biomedical to industrial engineering. Moreover, these materials often become themselves an interdisciplinary bridge between different scientific and technological domains.

When accounting for the effects of various phenomena occurring at the nanoscale, models and simulations together tend to reveal unsolved issues while enabling formidable advances that push forward the rich spectrum of technologies based on nanostructured materials. Moreover, it is clear that, for such materials, theoretical formulations and numerical solvers, dealing with mesoscopic or macroscopic descriptions, are necessary tools to enhance experiments and practical investigations.

This Special Issue aims to gather the rich variety of recent research breakthroughs in the perspective described above, and it aims to cover recent advances in the study of phenomena, the manipulation of materials at different scales, the design and characterization of nanoapplications, all enabled by computational modeling and simulation of nanomaterials.

Prof. Dr. Walter Lacarbonara
Prof. Dr. Giovanni Formica
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • physical nanomaterial models for experimental design and characterization
  • mesoscopic/macroscopic formulations
  • multi-scale computational approaches
  • coupled, multi-physics problems
  • carbon nanotube nanocomposites

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessFeature PaperArticle
Three-Step Description of Single-Pulse Formation of Laser-Induced Periodic Surface Structures on Metals
Nanomaterials 2020, 10(9), 1836; https://doi.org/10.3390/nano10091836 - 14 Sep 2020
Abstract
Two different scenarios are usually invoked in the formation of femtosecond Laser-Induced Periodic Surface Structures (LIPSS), either “self-organization” mechanisms or a purely “plasmonic” approach. In this paper, a three-step model of formation of single-laser-shot LIPSS is summarized. It is based on the periodic [...] Read more.
Two different scenarios are usually invoked in the formation of femtosecond Laser-Induced Periodic Surface Structures (LIPSS), either “self-organization” mechanisms or a purely “plasmonic” approach. In this paper, a three-step model of formation of single-laser-shot LIPSS is summarized. It is based on the periodic perturbation of the electronic temperature followed by an amplification, for given spatial periods, of the modulation in the lattice temperature and a final possible relocation by hydrodynamic instabilities. An analytical theory of the evolution of the temperature inhomogeneities is reported and supported by numerical calculations on the examples of three different metals: Al, Au, and Mo. The criteria of the possibility of hydrodynamic instabilities are also discussed. Full article
Show Figures

Graphical abstract

Open AccessArticle
Comparing Methods for Calculating Nano Crystal Size of Natural Hydroxyapatite Using X-Ray Diffraction
Nanomaterials 2020, 10(9), 1627; https://doi.org/10.3390/nano10091627 - 19 Aug 2020
Cited by 1
Abstract
We report on a comparison of methods based on XRD patterns for calculating crystal size. In this case, XRD peaks were extracted from hydroxyapatite obtained from cow, pig, and chicken bones. Hydroxyapatite was synthesized through the thermal treatment of natural bones at 950 [...] Read more.
We report on a comparison of methods based on XRD patterns for calculating crystal size. In this case, XRD peaks were extracted from hydroxyapatite obtained from cow, pig, and chicken bones. Hydroxyapatite was synthesized through the thermal treatment of natural bones at 950 °C. XRD patterns were selected by adjustment of X-Pert software for each method and for calculating the size of the crystals. Methods consisted of Scherrer (three models), Monshi–Scherrer, three models of Williamson–Hall (namely the Uniform Deformation Model (UDM), the Uniform Stress Deformation Model (USDM), and the Uniform Deformation Energy Density Model (UDEDM)), Halder–Wanger (H-W), and the Size Strain Plot Method (SSP). These methods have been used and compared together. The sizes of crystallites obtained by the XRD patterns in each method for hydroxyapatite from cow, pig, and chicken were 1371, 457, and 196 nm in the Scherrer method when considering all of the available peaks together (straight line model). A new model (straight line passing the origin) gave 60, 60, and 53 nm, which shows much improvement. The average model gave 56, 58, and 52 nm, for each of the three approaches, respectively, for cow, pig, and chicken. The Monshi–Scherrer method gave 60, 60, and 57 nm. Values of 56, 62, and 65 nm were given by the UDM method. The values calculated by the USDM method were 60, 62, and 62 nm. The values of 62, 62, and 65 nm were given by the UDEDM method for cow, pig, and chicken, respectively. Furthermore, the crystal size value was 4 nm for all samples in the H-W method. Values were also calculated as 43, 62, and 57 nm in the SSP method for cow, pig, and chicken tandemly. According to the comparison of values in each method, the Scherrer method (straight line model) for considering all peaks led to unreasonable values. Nevertheless, other values were in the acceptable range, similar to the reported values in the literature. Experimental analyses, such as specific surface area by gas adsorption (Brunauer–Emmett–Teller (BET)) and Transmission Electron Microscopy (TEM), were utilized. In the final comparison, parameters of accuracy, ease of calculations, having a check point for the researcher, and difference between the obtained values and experimental analysis by BET and TEM were considered. The Monshi–Scherrer method provided ease of calculation and a decrease in errors by applying least squares to the linear plot. There is a check point for this line that the slope must not be far from one. Then, the intercept gives the most accurate crystal size. In this study, the setup of values for BET (56, 52, and 49 nm) was also similar to the Monshi–Scherrer method and the use of it in research studies of nanotechnology is advised. Full article
Show Figures

Figure 1

Open AccessArticle
A Comparison of Empirical Correlations of Viscosity and Thermal Conductivity of Water-Ethylene Glycol-Al2O3 Nanofluids
Nanomaterials 2020, 10(8), 1487; https://doi.org/10.3390/nano10081487 - 29 Jul 2020
Abstract
Because of their superb thermal conductivity, nanofluids are seen as new generation of cooling mediums in many engineering applications. It is well established that even a small amount of nanoparticles mixed with a base fluid may result in distinct thermal conductivity enhancement. On [...] Read more.
Because of their superb thermal conductivity, nanofluids are seen as new generation of cooling mediums in many engineering applications. It is well established that even a small amount of nanoparticles mixed with a base fluid may result in distinct thermal conductivity enhancement. On the other hand, addition of nanoparticles to the base fluid results in its substantial viscosity increase. Therefore, it is very difficult to evaluate the relative importance of viscosity and thermal conductivity of the nanofluid on convective heat transfer performance. In order to estimate such resultant impact properly, it is necessary to develop reliable correlation equations for predictions of these two thermophysical properties of nanofluids. In this paper, the thermal conductivity and dynamic viscosity of five fluids, i.e., pure water, ethylene glycol (EG) and three mixtures of water and EG with volume ratio of 40:60, 50:50 and 60:40 have been experimentally determined. The aforementioned fluids served as base fluids in nanofluids with Al2O3 nanoparticles at the concentration of 0.01%, 0.1% and 1% by weight. A set of 20 correlations for prediction of thermal conductivity and dynamic viscosity of base fluids and corresponding nanofluids has been developed. Moreover, present results have been confronted with literature data and predictions made by use of carefully selected recognized literature correlations. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Impact of the Interband Transitions in Gold and Silver on the Dynamics of Propagating and Localized Surface Plasmons
Nanomaterials 2020, 10(7), 1411; https://doi.org/10.3390/nano10071411 - 19 Jul 2020
Abstract
Understanding and modeling of a surface-plasmon phenomenon on lossy metals interfaces based on simplified models of dielectric function lead to problems when confronted with reality. For a realistic description of lossy metals, such as gold and silver, in the optical range of the [...] Read more.
Understanding and modeling of a surface-plasmon phenomenon on lossy metals interfaces based on simplified models of dielectric function lead to problems when confronted with reality. For a realistic description of lossy metals, such as gold and silver, in the optical range of the electromagnetic spectrum and in the adjacent spectral ranges it is necessary to account not only for ohmic losses but also for the radiative losses resulting from the frequency-dependent interband transitions. We give a detailed analysis of Surface Plasmon Polaritons (SPPs) and Localized Surface Plasmons (LPSs) supported by such realistic metal/dielectric interfaces based on the dispersion relations both for flat and spherical gold and silver interfaces in the extended frequency and nanoparticle size ranges. The study reveals the region of anomalous dispersion for a silver flat interface in the near UV spectral range and high-quality factors for larger nanoparticles. We show that the frequency-dependent interband transition accounted in the dielectric function in a way allowing reproducing well the experimentally measured indexes of refraction does exert the pronounced impact not only on the properties of SPP and LSP for gold interfaces but also, with the weaker but not negligible impact, on the corresponding silver interfaces in the optical ranges and the adjacent spectral ranges. Full article
Show Figures

Graphical abstract

Open AccessArticle
Performance of Intrinsic and Modified Graphene for the Adsorption of H2S and CH4: A DFT Study
Nanomaterials 2020, 10(2), 299; https://doi.org/10.3390/nano10020299 - 10 Feb 2020
Cited by 8
Abstract
In this study, the adsorption performances of graphene before and after modification to H2S and CH4 molecules were studied using first principles with the density functional theory (DFT) method. The most stable adsorption configuration, the adsorption energy, the density of [...] Read more.
In this study, the adsorption performances of graphene before and after modification to H2S and CH4 molecules were studied using first principles with the density functional theory (DFT) method. The most stable adsorption configuration, the adsorption energy, the density of states, and the charge transfer are discussed to research the adsorption properties of intrinsic graphene (IG), Ni-doped graphene (Ni–G), vacancy defect graphene (DG), and graphene oxide (G–OH) for H2S and CH4. The weak adsorption and charge transfer of IG achieved different degrees of promotion by doping the Ni atom, setting a single vacancy defect, and adding oxygen-containing functional groups. It can be found that a single vacancy defect significantly enhances the strength of interaction between graphene and adsorbed molecules. DG peculiarly shows excellent adsorption performance for H2S, which is of great significance for the study of a promising sensor for H2S gas. Full article
Show Figures

Graphical abstract

Open AccessArticle
Effect of Domain Size, Boundary, and Loading Conditions on Mechanical Properties of Amorphous Silica: A Reactive Molecular Dynamics Study
Nanomaterials 2020, 10(1), 54; https://doi.org/10.3390/nano10010054 - 25 Dec 2019
Cited by 2
Abstract
Mechanical properties are very important when choosing a material for a specific application. They help to determine the range of usefulness of a material, establish the service life, and classify and identify materials. The size effect on mechanical properties has been well established [...] Read more.
Mechanical properties are very important when choosing a material for a specific application. They help to determine the range of usefulness of a material, establish the service life, and classify and identify materials. The size effect on mechanical properties has been well established numerically and experimentally. However, the role of the size effect combined with boundary and loading conditions on mechanical properties remains unknown. In this paper, by using molecular dynamics (MD) simulations with the state-of-the-art ReaxFF force field, we study mechanical properties of amorphous silica (e.g., Young’s modulus, Poisson’s ratio) as a function of domain size, full-/semi-periodic boundary condition, and tensile/compressive loading. We found that the domain-size effect on Young’s modulus and Poisson’s ratio is much more significant in semi-periodic domains compared to full-periodic domains. The results, for the first time, revealed the bimodular and anisotropic nature of amorphous silica at the atomic level. We also defined a “safe zone” regarding the domain size, where the bulk properties of amorphous silica can be reproducible, while the computational cost and accuracy are in balance. Full article
Show Figures

Figure 1

Open AccessArticle
Numerical Analysis of the Correlation between Arc Plasma Fluctuation and Nanoparticle Growth–Transport under Atmospheric Pressure
Nanomaterials 2019, 9(12), 1736; https://doi.org/10.3390/nano9121736 - 06 Dec 2019
Cited by 2
Abstract
A time-dependent two-dimensional (2D) axisymmetric simulation was conducted for arc plasma with dynamically fluctuating fluid generating iron nanoparticles in a direct-current discharge condition. The nonequilibrium process of simultaneous growth and transport of nanoparticles is simulated using a simple model with a low computational [...] Read more.
A time-dependent two-dimensional (2D) axisymmetric simulation was conducted for arc plasma with dynamically fluctuating fluid generating iron nanoparticles in a direct-current discharge condition. The nonequilibrium process of simultaneous growth and transport of nanoparticles is simulated using a simple model with a low computational cost. To ascertain fluid dynamic instability and steep gradients in plasma temperature and particle distributions, a highly accurate method is adopted for computation. The core region of the arc plasma is almost stationary, whereas the fringe fluctuates because of fluid dynamic instability between the arc plasma and the shielding gas. In the downstream region, the vapor molecules decrease by condensation. The nanoparticles decrease by coagulation. These results suggest that both of the simultaneous processes make important contributions to particle growth. The fluctuation of nanoparticle number density in a distant region exhibits stronger correlation with the temperature fluctuation at the plasma fringe. The correlation analysis results suggest that the distribution of growing nanoparticles distant from the arc plasma can be controlled via control of temperature fluctuation at the arc plasma fringe. Full article
Show Figures

Graphical abstract

Open AccessArticle
Super Ductility of Nanoglass Aluminium Nitride
Nanomaterials 2019, 9(11), 1535; https://doi.org/10.3390/nano9111535 - 29 Oct 2019
Cited by 2
Abstract
Ceramics have been widely used in many fields because of their distinctive properties, however, brittle fracture usually limits their application. To solve this problem, nanoglass ceramics were developed. In this article, we numerically investigated the mechanical properties of nanoglass aluminium nitride (ng-AlN) with [...] Read more.
Ceramics have been widely used in many fields because of their distinctive properties, however, brittle fracture usually limits their application. To solve this problem, nanoglass ceramics were developed. In this article, we numerically investigated the mechanical properties of nanoglass aluminium nitride (ng-AlN) with different glassy grain sizes under tension using molecular dynamics simulations. It was found that ng-AlN exhibits super ductility and tends to deform uniformly without the formation of voids as the glassy grain size decreases to about 1 nm, which was attributed to a large number of uniformly distributed shear transformation zones (STZs). We further investigated the effects of temperature and strain rate on ng-AlNd = 1 nm, which showed that temperature insignificantly influences the elastic modulus, while the dependence of the ultimate strength on temperature follows the T2/3 scaling law. Meanwhile, the ultimate strength of ng-AlNd = 1 nm is positively correlated with the strain rate, following a power function relationship. Full article
Show Figures

Figure 1

Open AccessArticle
Endohedral Fullerene [email protected]28 Adsorbed on Au(111) Surface as a High-Efficiency Spin Filter: A Theoretical Study
Nanomaterials 2019, 9(8), 1068; https://doi.org/10.3390/nano9081068 - 25 Jul 2019
Abstract
We present a theoretical study on the adsorption and spin transport properties of magnetic [email protected]28 using Ab initio calculations based on spin density functional theory and non-equilibrium Green’s function techniques. [email protected]28 tends to adsorb on the bridge sites in the manner [...] Read more.
We present a theoretical study on the adsorption and spin transport properties of magnetic [email protected]28 using Ab initio calculations based on spin density functional theory and non-equilibrium Green’s function techniques. [email protected]28 tends to adsorb on the bridge sites in the manner of C–C bonds, and the spin-resolved transmission spectra of [email protected]28 molecular junctions exhibit robust transport spin polarization (TSP). Under small bias voltage, the transport properties of [email protected]28 are mainly determined by the spin-down channel and exhibit a large spin polarization. When compressing the right electrode, the TSP is decreased, but high spin filter efficiency (SFE) is still maintained. These theoretical results indicate that [email protected]28 with a large magnetic moment has potential applications in molecular spintronics. Full article
Show Figures

Figure 1

Open AccessArticle
A New Model to Predict Optimum Conditions for Growth of 2D Materials on a Substrate
Nanomaterials 2019, 9(7), 978; https://doi.org/10.3390/nano9070978 - 05 Jul 2019
Cited by 2
Abstract
Deposition of atoms or molecules on a solid surface is a flexible way to prepare various novel two-dimensional materials if the growth conditions, such as suitable surface and optimum temperature, could be predicted theoretically. However, prediction challenges modern theory of material design because [...] Read more.
Deposition of atoms or molecules on a solid surface is a flexible way to prepare various novel two-dimensional materials if the growth conditions, such as suitable surface and optimum temperature, could be predicted theoretically. However, prediction challenges modern theory of material design because the free energy criteria can hardly be applied to this issue due to the long-standing problem in statistical physics of the calculations of the free energy. Herein, we present an approach to the problem by the demonstrations of graphene and γ-graphyne on the surface of copper crystal, as well as silicene on a silver substrate. Compared with previous state-of-the-art algorithms for calculations of the free energy, our approach is capable of achieving computational precisions at least 10-times higher, which was confirmed by molecular dynamics simulations, and working at least four orders of magnitude faster, which enables us to obtain free energy based on ab initio calculations of the interaction potential instead of the empirical one. The approach was applied to predict the optimum conditions for silicene growth on different surfaces of solid silver based on density functional theory, and the results are in good agreement with previous experimental observations. Full article
Show Figures

Figure 1

Open AccessArticle
Small-Angle Scattering from Weakly Correlated Nanoscale Mass Fractal Aggregates
Nanomaterials 2019, 9(4), 648; https://doi.org/10.3390/nano9040648 - 22 Apr 2019
Cited by 6
Abstract
Formation of fractal aggregates is generally an undesired effect which may lead to end products with worse properties as compared to those of the individual components, especially in nanocomposite materials. Although several methods exist to overcome this issue, such as inclusion of additives, [...] Read more.
Formation of fractal aggregates is generally an undesired effect which may lead to end products with worse properties as compared to those of the individual components, especially in nanocomposite materials. Although several methods exist to overcome this issue, such as inclusion of additives, irradiation grafting or sonication, their effectiveness relies on a detailed knowledge of the structural properties of the aggregates. Here, small-angle scattering (SAS) technique is used and a theoretical model based on a unified Guinier–Porod approach with weak correlations is developed for investigating the structural properties of nanoscale fractal aggregates. It is shown how one can extract information concerning the correlation length/degree between aggregates, their fractal dimension and the overall size. These parameters can be used for development of various types of novel nanomaterials with pre-determined properties and functions. Full article
Show Figures

Figure 1

Open AccessArticle
Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane
Nanomaterials 2019, 9(4), 563; https://doi.org/10.3390/nano9040563 - 07 Apr 2019
Abstract
An opto-thermally excited optical fiber Fabry-Perot (F-P) resonant probe with suspended clamped circular graphene diaphragm is presented in this paper. Then, the dependence of resonance frequency behaviors of graphene diaphragm upon opto-mechanical factors including membrane properties, laser excitation parameters and film boundary conditions [...] Read more.
An opto-thermally excited optical fiber Fabry-Perot (F-P) resonant probe with suspended clamped circular graphene diaphragm is presented in this paper. Then, the dependence of resonance frequency behaviors of graphene diaphragm upon opto-mechanical factors including membrane properties, laser excitation parameters and film boundary conditions are investigated via COMSOL Multiphysics simulation. The results show that the radius and thickness of membrane will linearly affect the optical fiber light-induced temperature distribution, thus resulting in rapidly decreasing resonance frequency changes with the radius-to-thickness ratio. Moreover, the prestress can be regulated in the range of 108 Pa to 109 Pa by altering the environmental temperature with a scale factor of 14.2 MPa/K. It is important to note that the availability of F-P resonant probe with a defective clamped circular graphene membrane can be improved notably by fabricating the defected circular membrane to a double-end clamped beam, which gives a broader perspective to characterize the resonance performance of opto-thermally excited F-P resonators. Full article
Show Figures

Figure 1

Back to TopTop