molecules-logo

Journal Browser

Journal Browser

Efficient Pharmaceutical and Chemical Approaches for Anticancer Therapy: Design, Preliminary Evaluations, and Further Developments

A topical collection in Molecules (ISSN 1420-3049). This collection belongs to the section "Medicinal Chemistry".

Viewed by 869034

Editors


E-Mail Website
Collection Editor
School of Pharmacy, University of Reading, Reading, UK
Interests: development of new chemical and enzymatic methods for the treatment of life threatening diseases; anti-infective agent; glycosidase enzyme inhibitors; anti-viral agents; personalised medicines
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Co-Collection Editor
School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishop Hall Lane, Chelmsford CM1 1SQ, UK
Interests: dendrimer nanocarriers; biopolymers; clinical pharmaceutics; polymer nanoparticulates
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Former Collection Editor
Formerly Head, Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium
Interests: heterocycles; medicinal chemistry; green chemistry; microwave-induced synthesis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Former Collection Editor
Formerly Professor at Division of Basic and Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
Interests: medicinal chemistry; organic chemistry; anti-opportunistic agents; anti-parasitic agents; prodrugs

Topical Collection Information

Dear Colleagues,

Developing novel cancer therapeutics is essential for treating cancer, a complex, multi-factorial disease that is dreaded worldwide. Although significant advances have been made in recent years in preventing and treating cancer, the mortality rate is still unacceptably high. Many of the current chemotherapeutics are limited by significant side effects, unpredictable efficacies or acquired resistances. Recent discoveries concerning the pathogenesis and biology of cancer have unraveled new, strategic cellular targets for drug intervention. This has allowed the rational development of novel cancer therapeutics. For this Special Issue, we invite the submission of manuscripts that focus on the design, synthesis, evaluation, and further development of investigational agents (including natural products) as potential cancer chemotherapeutics.

Prof. Dr. Helen Osborn
Dr. Mohammad Najlah
Collection Editors

Dr. Jean Jacques Vanden Eynde
Dr. Annie Mayence
Dr. Tien L. Huang
Former Collection Editors

Manuscript Submission Information

Manuscripts for the topical collection can be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on this website. The topical collection considers regular research articles, short communications and review articles. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page.

Please visit the Instructions for Authors page before submitting a manuscript. The article processing charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs).

Keywords

  • anticancer activity
  • anticancer agents
  • antiproliferative effects
  • antitumor activity
  • apoptosis
  • cancer cells
  • chemotherapy
  • cytotoxicity
  • oncology
  • tumor cells

Published Papers (115 papers)

2023

Jump to: 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014

19 pages, 659 KiB  
Review
Perhexiline: Old Drug, New Tricks? A Summary of Its Anti-Cancer Effects
by Bimala Dhakal, Yoko Tomita, Paul Drew, Timothy Price, Guy Maddern, Eric Smith and Kevin Fenix
Molecules 2023, 28(8), 3624; https://doi.org/10.3390/molecules28083624 - 21 Apr 2023
Cited by 4 | Viewed by 2586
Abstract
Cancer metabolic plasticity, including changes in fatty acid metabolism utilisation, is now widely appreciated as a key driver for cancer cell growth, survival and malignancy. Hence, cancer metabolic pathways have been the focus of much recent drug development. Perhexiline is a prophylactic antianginal [...] Read more.
Cancer metabolic plasticity, including changes in fatty acid metabolism utilisation, is now widely appreciated as a key driver for cancer cell growth, survival and malignancy. Hence, cancer metabolic pathways have been the focus of much recent drug development. Perhexiline is a prophylactic antianginal drug known to act by inhibiting carnitine palmitoyltransferase 1 (CPT1) and 2 (CPT2), mitochondrial enzymes critical for fatty acid metabolism. In this review, we discuss the growing evidence that perhexiline has potent anti-cancer properties when tested as a monotherapy or in combination with traditional chemotherapeutics. We review the CPT1/2 dependent and independent mechanisms of its anti-cancer activities. Finally, we speculate on the clinical feasibility and utility of repurposing perhexiline as an anti-cancer agent, its limitations including known side effects and its potential added benefit of limiting cardiotoxicity induced by other chemotherapeutics. Full article
Show Figures

Figure 1

15 pages, 3286 KiB  
Article
LncRNA JHDM1D-AS1 Is a Key Biomarker for Progression and Modulation of Gemcitabine Sensitivity in Bladder Cancer Cells
by Isadora Oliveira Ansaloni Pereira, Glenda Nicioli da Silva, Tamires Cunha Almeida, Ana Paula Braga Lima, André Luiz Ventura Sávio, Katia Ramos Moreira Leite and Daisy Maria Fávero Salvadori
Molecules 2023, 28(5), 2412; https://doi.org/10.3390/molecules28052412 - 6 Mar 2023
Cited by 2 | Viewed by 2011
Abstract
Long non-coding RNAs are frequently found to be dysregulated and are linked to carcinogenesis, aggressiveness, and chemoresistance in a variety of tumors. As expression levels of the JHDM1D gene and lncRNA JHDM1D-AS1 are altered in bladder tumors, we sought to use their combined [...] Read more.
Long non-coding RNAs are frequently found to be dysregulated and are linked to carcinogenesis, aggressiveness, and chemoresistance in a variety of tumors. As expression levels of the JHDM1D gene and lncRNA JHDM1D-AS1 are altered in bladder tumors, we sought to use their combined expression to distinguish between low-and high-grade bladder tumors by RTq-PCR. In addition, we evaluated the functional role of JHDM1D-AS1 and its association with the modulation of gemcitabine sensitivity in high-grade bladder-tumor cells. J82 and UM-UC-3 cells were treated with siRNA-JHDM1D-AS1 and/or three concentrations of gemcitabine (0.39, 0.78, and 1.56 µM), and then submitted to cytotoxicity testing (XTT), clonogenic survival, cell cycle progression, cell morphology, and cell migration assays. When JHDM1D and JHDM1D-AS1 expression levels were used in combination, our findings indicated favorable prognostic value. Furthermore, the combined treatment resulted in greater cytotoxicity, a decrease in clone formation, G0/G1 cell cycle arrest, morphological alterations, and a reduction in cell migration capacity in both lineages compared to the treatments alone. Thus, silencing of JHDM1D-AS1 reduced the growth and proliferation of high-grade bladder-tumor cells and increased their sensitivity to gemcitabine treatment. In addition, the expression of JHDM1D/JHDM1D-AS1 indicated potential prognostic value in the progression of bladder tumors. Full article
Show Figures

Figure 1

15 pages, 1326 KiB  
Review
Emerging Immunotherapeutic and Diagnostic Modalities in Carcinoid Tumors
by Shahnaz D. Vellani, Anthony Nigro, Shangari Varatharajan, Lance D. Dworkin and Justin Fortune Creeden
Molecules 2023, 28(5), 2047; https://doi.org/10.3390/molecules28052047 - 22 Feb 2023
Cited by 2 | Viewed by 2107
Abstract
Evasion of innate immunity represents a frequently employed method by which tumor cells survive and thrive. Previously, the development of immunotherapeutic agents capable of overcoming this evasion has realized pronounced clinical utility across a variety of cancer types. More recently, immunological strategies have [...] Read more.
Evasion of innate immunity represents a frequently employed method by which tumor cells survive and thrive. Previously, the development of immunotherapeutic agents capable of overcoming this evasion has realized pronounced clinical utility across a variety of cancer types. More recently, immunological strategies have been investigated as potentially viable therapeutic and diagnostic modalities in the management of carcinoid tumors. Classic treatment options for carcinoid tumors rely upon surgical resection or non-immune pharmacology. Though surgical intervention can be curative, tumor characteristics, such as size, location, and spread, heavily limit success. Non-immune pharmacologic treatments can be similarly limited, and many demonstrate problematic side effects. Immunotherapy may be able to overcome these limitations and further improve clinical outcomes. Similarly, emerging immunologic carcinoid biomarkers may improve diagnostic capabilities. Recent developments in immunotherapeutic and diagnostic modalities of carcinoid management are summarized here. Full article
Show Figures

Figure 1

16 pages, 3741 KiB  
Review
The Functional Roles of ISG15/ISGylation in Cancer
by Yin Yuan, Hai Qin, Huilong Li, Wanjin Shi, Lichen Bao, Shengtao Xu, Jun Yin and Lufeng Zheng
Molecules 2023, 28(3), 1337; https://doi.org/10.3390/molecules28031337 - 31 Jan 2023
Cited by 9 | Viewed by 4170
Abstract
The protein ISG15 encoded by interferon-stimulated gene (ISG) 15 is the first identified member of the ubiquitin-like protein family and exists in the form of monomers and conjugated complexes. Like ubiquitin, ISG15 can mediate an ubiquitin-like modification by covalently modifying other proteins, known [...] Read more.
The protein ISG15 encoded by interferon-stimulated gene (ISG) 15 is the first identified member of the ubiquitin-like protein family and exists in the form of monomers and conjugated complexes. Like ubiquitin, ISG15 can mediate an ubiquitin-like modification by covalently modifying other proteins, known as ISGylation. There is growing evidence showing that both the free and conjugated ISG15 are involved in multiple key cellular processes, including autophagy, exosome secretion, DNA repair, immune regulation, and cancer occurrence and progression. In this review, we aim to further clarify the function of ISG15 and ISGylation in cancer, demonstrate the important relationship between ISG15/ISGylation and cancer, and emphasize new insights into the different roles of ISG15/ISGylation in cancer progression. This review may contribute to therapeutic intervention in cancer. However, due to the limitations of current research, the regulation of ISG15/ISGylation on cancer progression is not completely clear, thus further comprehensive and sufficient correlation studies are still needed. Full article
Show Figures

Figure 1

2021

Jump to: 2023, 2020, 2019, 2018, 2017, 2016, 2015, 2014

28 pages, 4686 KiB  
Article
Synthesis, DFT Calculations, Antiproliferative, Bactericidal Activity and Molecular Docking of Novel Mixed-Ligand Salen/8-Hydroxyquinoline Metal Complexes
by Badriah Saad Al-Farhan, Maram T. Basha, Laila H. Abdel Rahman, Ahmed M. M. El-Saghier, Doaa Abou El-Ezz, Adel A. Marzouk, Mohamed R. Shehata and Ehab M. Abdalla
Molecules 2021, 26(16), 4725; https://doi.org/10.3390/molecules26164725 - 4 Aug 2021
Cited by 37 | Viewed by 3698
Abstract
Despite the common use of salens and hydroxyquinolines as therapeutic and bioactive agents, their metal complexes are still under development. Here, we report the synthesis of novel mixed-ligand metal complexes (MSQ) comprising salen (S), derived from (2,2′-{1,2-ethanediylbis[nitrilo(E) methylylidene]}diphenol, and 8-hydroxyquinoline (Q) with Co(II), [...] Read more.
Despite the common use of salens and hydroxyquinolines as therapeutic and bioactive agents, their metal complexes are still under development. Here, we report the synthesis of novel mixed-ligand metal complexes (MSQ) comprising salen (S), derived from (2,2′-{1,2-ethanediylbis[nitrilo(E) methylylidene]}diphenol, and 8-hydroxyquinoline (Q) with Co(II), Ni(II), Cd(II), Al(III), and La(III). The structures and properties of these MSQ metal complexes were investigated using molar conductivity, melting point, FTIR, 1H NMR, 13C NMR, UV–VIS, mass spectra, and thermal analysis. Quantum calculation, analytical, and experimental measurements seem to suggest the proposed structure of the compounds and its uncommon monobasic tridentate binding mode of salen via phenolic oxygen, azomethine group, and the NH group. The general molecular formula of MSQ metal complexes is [M(S)(Q)(H2O)] for M (II) = Co, Ni, and Cd or [M(S)(Q)(Cl)] and [M(S)(Q)(H2O)]Cl for M(III) = La and Al, respectively. Importantly, all prepared metal complexes were evaluated for their antimicrobial and anticancer activities. The metal complexes exhibited high cytotoxic potency against human breast cancer (MDA-MB231) and liver cancer (Hep-G2) cell lines. Among all MSQ metal complexes, CoSQ and LaSQ produced IC50 values (1.49 and 1.95 µM, respectively) that were comparable to that of cisplatin (1.55 µM) against Hep-G2 cells, whereas CdSQ and LaSQ had best potency against MDA-MB231 with IC50 values of 1.95 and 1.43 µM, respectively. Furthermore, the metal complexes exhibited significant antimicrobial activities against a wide spectrum of both Gram-positive and -negative bacterial and fungal strains. The antibacterial and antifungal efficacies for the MSQ metal complexes, the free S and Q ligands, and the standard drugs gentamycin and ketoconazole decreased in the order AlSQ > LaSQ > CdSQ > gentamycin > NiSQ > CoSQ > Q > S for antibacterial activity, and for antifungal activity followed the trend of LaSQ > AlSQ > CdSQ > ketoconazole > NiSQ > CoSQ > Q > S. Molecular docking studies were performed to investigate the binding of the synthesized compounds with breast cancer oxidoreductase (PDB ID: 3HB5). According to the data obtained, the most probable coordination geometry is octahedral for all the metal complexes. The molecular and electronic structures of the metal complexes were optimized theoretically, and their quantum chemical parameters were calculated. PXRD results for the Cd(II) and La(III) metal complexes indicated that they were crystalline in nature. Full article
Show Figures

Graphical abstract

22 pages, 9575 KiB  
Review
Sunscreens Containing Cyclodextrin Inclusion Complexes for Enhanced Efficiency: A Strategy for Skin Cancer Prevention
by Layan Dahabra, Grace Broadberry, Adam Le Gresley, Mohammad Najlah and Mouhamad Khoder
Molecules 2021, 26(6), 1698; https://doi.org/10.3390/molecules26061698 - 18 Mar 2021
Cited by 19 | Viewed by 5556
Abstract
Unprotected exposure of skin to solar ultraviolet radiation (UVR) may damage the DNA of skin cells and can lead to skin cancer. Sunscreens are topical formulations used to protect skin against UVR. The active ingredients of sunscreens are UV filters that absorb, scatter, [...] Read more.
Unprotected exposure of skin to solar ultraviolet radiation (UVR) may damage the DNA of skin cells and can lead to skin cancer. Sunscreens are topical formulations used to protect skin against UVR. The active ingredients of sunscreens are UV filters that absorb, scatter, and/or reflect UVR. Preventing the formation of free radicals and repairing DNA damages, natural antioxidants are also added to sunscreens as a second fold of protection against UVR. Antioxidants can help stabilise these formulations during the manufacturing process and upon application on skin. However, UV filters and antioxidants are both susceptible to degradation upon exposure to sunlight and oxygen. Additionally, due to their poor water solubility, natural antioxidants are challenging to formulate and exhibit limited penetration and bioavailability in the site of action (i.e., deeper skin layers). Cyclodextrins (CDs) are cyclic oligosaccharides that are capable of forming inclusion complexes with poorly soluble drugs, such as antioxidants. In this review, we discuss the use of CDs inclusion complexes to enhance the aqueous solubility of antioxidants and chemical UV filters and provide a protective shield against degradative factors. The role of CDs in providing a controlled drug release profile from sunscreens is also discussed. Finally, incorporating CDs inclusion complexes into sunscreens has the potential to increase their efficiency and hence improve their skin cancer prevention. Full article
Show Figures

Figure 1

15 pages, 3116 KiB  
Article
The Antiproliferative and Apoptotic Effect of a Novel Synthesized S-Triazine Dipeptide Series, and Toxicity Screening in Zebrafish Embryos
by Azizah M. Malebari, Rakia Abd Alhameed, Zainab Almarhoon, Muhammad Farooq, Mohammad A. M. Wadaan, Anamika Sharma, Beatriz G. de la Torre, Fernando Albericio and Ayman El-Faham
Molecules 2021, 26(4), 1170; https://doi.org/10.3390/molecules26041170 - 22 Feb 2021
Cited by 7 | Viewed by 2649
Abstract
Several derivatives containing morpholine/piperidine, anilines, and dipeptides as pending moieties were prepared using s-triazine as a scaffold. These compounds were evaluated for their anticancer activity against two human breast cancer cell lines (MCF-7 and MDA-MB-231), a colon cancer cell line (HCT-116), and [...] Read more.
Several derivatives containing morpholine/piperidine, anilines, and dipeptides as pending moieties were prepared using s-triazine as a scaffold. These compounds were evaluated for their anticancer activity against two human breast cancer cell lines (MCF-7 and MDA-MB-231), a colon cancer cell line (HCT-116), and a non-tumorigenic cell line (HEK 293). Tamoxifen was used as a reference. Animal toxicity tests were carried out in zebrafish embryos. Most of these compounds showed a higher activity against breast cancer than colon cancer. Compound 3a—which contains morpholine, aniline, and glycylglycinate methyl ester—showed a high level of cytotoxicity against MCF-7 cells with IC50 values of less than 1 µM. This compound showed a much lower level of toxicity against the non-tumorigenic HEK-293 cell line, and in the in vivo studies using zebrafish embryos. Furthermore, it induced cell cycle arrest at the G2/M phase, and apoptosis in MCF-7 cells. On the basis of our results, 3a emerges as a potential candidate for further development as a therapeutic drug to treat hormone receptor-positive breast cancer. Full article
Show Figures

Figure 1

23 pages, 2269 KiB  
Article
Marine Exopolysaccharide Complexed With Scandium Aimed as Theranostic Agents
by Mattia Mazza, Cyrille Alliot, Corinne Sinquin, Sylvia Colliec-Jouault, Pascal E. Reiller and Sandrine Huclier-Markai
Molecules 2021, 26(4), 1143; https://doi.org/10.3390/molecules26041143 - 20 Feb 2021
Cited by 6 | Viewed by 2535
Abstract
(1) Background: Exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium, showed anti-metastatic properties. They may represent a new class of ligands to be combined with theranostic radionuclides, such as 47Sc/44Sc. The goal of this work was to investigate the feasibility [...] Read more.
(1) Background: Exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium, showed anti-metastatic properties. They may represent a new class of ligands to be combined with theranostic radionuclides, such as 47Sc/44Sc. The goal of this work was to investigate the feasibility of such coupling. (2) Methods: EPSs, as well as heparin used as a drug reference, were characterized in terms of molar mass and dispersity using Asymmetrical Flow Field-Flow Fractionation coupled to Multi-Angle Light Scattering (AF4-MALS). The intrinsic viscosity of EPSs at different ionic strengths were measured in order to establish the conformation. To determine the stability constants of Sc with EPS and heparin, a Free-ion selective radiotracer extraction (FISRE) method has been used. (3) Results: AF4-MALS showed that radical depolymerization produces monodisperse EPSs, suitable for therapeutic use. EPS conformation exhibited a lower hydrodynamic volume for the highest ionic strengths. The resulting random-coiled conformation could affect the complexation with metal for high concentration. The LogK of Sc-EPS complexes have been determined and showing that they are comparable to the Sc-Hep. (4) Conclusions: EPSs are very promising to be coupled with the theranostic pair of scandium for Nuclear Medicine. Full article
Show Figures

Figure 1

2020

Jump to: 2023, 2021, 2019, 2018, 2017, 2016, 2015, 2014

29 pages, 7046 KiB  
Article
Structure-Based Discovery and Bioactivity Evaluation of Novel Aurora-A Kinase Inhibitors as Anticancer Agents via Docking-Based Comparative Intermolecular Contacts Analysis (dbCICA)
by Majd S. Hijjawi, Reem Fawaz Abutayeh and Mutasem O. Taha
Molecules 2020, 25(24), 6003; https://doi.org/10.3390/molecules25246003 - 18 Dec 2020
Cited by 12 | Viewed by 3255
Abstract
Aurora-A kinase plays a central role in mitosis, where aberrant activation contributes to cancer by promoting cell cycle progression, genomic instability, epithelial-mesenchymal transition, and cancer stemness. Aurora-A kinase inhibitors have shown encouraging results in clinical trials but have not gained Food and Drug [...] Read more.
Aurora-A kinase plays a central role in mitosis, where aberrant activation contributes to cancer by promoting cell cycle progression, genomic instability, epithelial-mesenchymal transition, and cancer stemness. Aurora-A kinase inhibitors have shown encouraging results in clinical trials but have not gained Food and Drug Administration (FDA) approval. An innovative computational workflow named Docking-based Comparative Intermolecular Contacts Analysis (dbCICA) was applied—aiming to identify novel Aurora-A kinase inhibitors—using seventy-nine reported Aurora-A kinase inhibitors to specify the best possible docking settings needed to fit into the active-site binding pocket of Aurora-A kinase crystal structure, in a process that only potent ligands contact critical binding-site spots, distinct from those occupied by less-active ligands. Optimal dbCICA models were transformed into two corresponding pharmacophores. The optimal one, in capturing active hits and discarding inactive ones, validated by receiver operating characteristic analysis, was used as a virtual in-silico search query for screening new molecules from the National Cancer Institute database. A fluorescence resonance energy transfer (FRET)-based assay was used to assess the activity of captured molecules and five promising Aurora-A kinase inhibitors were identified. The activity was next validated using a cell culture anti-proliferative assay (MTT) and revealed a most potent lead 85(NCI 14040) molecule after 72 h of incubation, scoring IC50 values of 3.5–11.0 μM against PANC1 (pancreas), PC-3 (prostate), T-47D and MDA-MB-231 (breast)cancer cells, and showing favorable safety profiles (27.5 μM IC50 on fibroblasts). Our results provide new clues for further development of Aurora-A kinase inhibitors as anticancer molecules. Full article
Show Figures

Graphical abstract

20 pages, 2847 KiB  
Article
Synthesis, In Silico and In Vitro Assessment of New Quinazolinones as Anticancer Agents via Potential AKT Inhibition
by Ahmed A. Noser, Mohamed El-Naggar, Thoria Donia and Aboubakr H. Abdelmonsef
Molecules 2020, 25(20), 4780; https://doi.org/10.3390/molecules25204780 - 18 Oct 2020
Cited by 32 | Viewed by 4180
Abstract
A series of novel quinazolinone derivatives (213) was synthesized and examined for their cytotoxicity to HepG2, MCF-7, and Caco-2 in an MTT assay. Among these derivatives, compounds 4 and 9 exhibited significant cytotoxic activity against Caco-2, HepG2, and MCF-7 [...] Read more.
A series of novel quinazolinone derivatives (213) was synthesized and examined for their cytotoxicity to HepG2, MCF-7, and Caco-2 in an MTT assay. Among these derivatives, compounds 4 and 9 exhibited significant cytotoxic activity against Caco-2, HepG2, and MCF-7 cancer cells. Compound 4 had more significant inhibitory effects than compound 9 on Caco-2, HepG2, and MCF-7 cell lines, with IC50 values of 23.31 ± 0.09, 53.29 ± 0.25, and 72.22 ± 0.14µM, respectively. The AKT pathway is one of human cancer’s most often deregulated signals. AKT is also overexpressed in human cancers such as glioma, lung, breast, ovarian, gastric, and pancreas. A molecular docking study was performed to analyze the inhibitory action of newly synthetic quinazolinone derivatives against Homo sapiens AKT1 protein. Molecular docking simulations were found to be in accordance with in vitro studies, and hence supported the biological activity. The results suggested that compounds 4 and 9 could be used as drug candidates for cancer therapy via its potential inhibition of AKT1 as described by docking study. Full article
Show Figures

Figure 1

13 pages, 1975 KiB  
Article
Imipramine Inhibits Migration and Invasion in Metastatic Castration-Resistant Prostate Cancer PC-3 Cells via AKT-Mediated NF-κB Signaling Pathway
by Eun Yeong Lim, Joon Park, Yun Tai Kim and Min Jung Kim
Molecules 2020, 25(20), 4619; https://doi.org/10.3390/molecules25204619 - 11 Oct 2020
Cited by 18 | Viewed by 4237
Abstract
Imipramine (IMI) is a tricyclic synthetic antidepressant that is used to treat chronic psychiatric disorders, including depression and neuropathic pain. IMI also has inhibitory effects against various cancer types, including prostate cancer; however, the mechanism of its anticancer activity is not well understood. [...] Read more.
Imipramine (IMI) is a tricyclic synthetic antidepressant that is used to treat chronic psychiatric disorders, including depression and neuropathic pain. IMI also has inhibitory effects against various cancer types, including prostate cancer; however, the mechanism of its anticancer activity is not well understood. In the present study, we investigated the antimetastatic and anti-invasive effects of IMI in metastatic castration-resistant prostate cancer PC-3 cells, with an emphasis on the serine/threonine protein kinase AKT-mediated nuclear factor kappa B (NF-κB) signaling pathway. While IMI did not induce cell death, it attenuated PC-3 cell proliferation. According to the wound healing assay and invasion assay, migration and invasion in PC-3 cells were significantly inhibited by IMI in a dose-dependent manner. IMI significantly downregulated p-AKT protein expression but upregulated phospho-extracellular signal-regulated kinase (ERK1)/2 protein expression levels. Furthermore, IMI treatment resulted in decreased AKT-mediated downstream signaling, including p-inhibitor of κB kinase (IKK)α/β, p-inhibitor of κB (IκBα), and p-p65. Inhibited NF-κB signaling reduced the secretion of several proinflammatory cytokines and chemokine by PC-3 cells. Overall, our study explored the negative correlation between the use of antidepressants and prostate cancer progression, showing that IMI attenuated cell viability, migration, and invasion of PC-3 cells by suppressing the expression of AKT and NF-κB-related signaling proteins and secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1). Full article
Show Figures

Graphical abstract

20 pages, 5833 KiB  
Article
Synthesis and Cytotoxic Activity of Novel C-23-Modified Asiatic Acid Derivatives
by Yi-hong Lu, Ming-cang Chen, Fang Liu, Zhou Xu, Xiao-ting Tian, Yang Xie and Cheng-gang Huang
Molecules 2020, 25(16), 3709; https://doi.org/10.3390/molecules25163709 - 14 Aug 2020
Cited by 4 | Viewed by 2665
Abstract
We selectively oxidized the C-23 hydroxyl group in an asiatic acid (AA) derivative and then, for the first time with AA, modification of the C-23 carboxyl group was conducted to synthesize a series of new AA derivatives. The evaluation of their cytotoxic activities [...] Read more.
We selectively oxidized the C-23 hydroxyl group in an asiatic acid (AA) derivative and then, for the first time with AA, modification of the C-23 carboxyl group was conducted to synthesize a series of new AA derivatives. The evaluation of their cytotoxic activities against two human cancer cell lines (SKOV-3 and HCT116) using the MTT assay in vitro revealed a distinctive structure activity relationship (SAR) associated with the intramolecular hydrogen bonding of the amide moiety at C-23. According to the established SAR, the cytotoxic activities of four promising compounds were then evaluated against MCF-7, A549, A2780, HepG2 and HL-60 cancer cell lines. Compound 10 had the best cytotoxic activity among all tested derivatives in the HL-60 cell line, giving IC50 = 0.47 μM, while showing no cytotoxic effect against human normal cells (HUVEC). Full article
Show Figures

Graphical abstract

2019

Jump to: 2023, 2021, 2020, 2018, 2017, 2016, 2015, 2014

16 pages, 4727 KiB  
Article
Design, Synthesis and Preliminary Biological Evaluation of Benzylsulfone Coumarin Derivatives as Anti-Cancer Agents
by Tao Wang, Tao Peng, Xiaoxue Wen, Gang Wang, Yunbo Sun, Shuchen Liu, Shouguo Zhang and Lin Wang
Molecules 2019, 24(22), 4034; https://doi.org/10.3390/molecules24224034 - 7 Nov 2019
Cited by 19 | Viewed by 3845
Abstract
In this work, a series of benzylsulfone coumarin derivatives 5a5o were synthesized and characterized. Kinase inhibitory activity assay indicated that most of the compounds showed considerable activity against PI3K. Anti-tumor activity studies of the active compounds were also carried out in [...] Read more.
In this work, a series of benzylsulfone coumarin derivatives 5a5o were synthesized and characterized. Kinase inhibitory activity assay indicated that most of the compounds showed considerable activity against PI3K. Anti-tumor activity studies of the active compounds were also carried out in vitro on the Hela, HepG2, H1299, HCT-116, and MCF-7 tumor cell lines by MTS assay. The structure–activity relationships (SARs) of these compounds were analyzed in detail. Compound 5h exhibited the most potent activities against the mentioned cell lines with IC50 values ranging from 18.12 to 32.60 μM, followed by 5m with IC50 values of 29.30–42.14 μM. Furthermore, 5h and 5m clearly retarded the migration of Hela cells in vitro. Next, an in silico molecular docking study was conducted to evaluate the binding models of 5h and 5m towards PI3Kα and PI3Kβ. Collectively, the above findings suggested that compounds 5h and 5m might be promising PI3K inhibitors deserving further investigation for cancer treatment. Full article
Show Figures

Figure 1

22 pages, 3467 KiB  
Article
Benzoxaboroles—Novel Autotaxin Inhibitors
by Kristina Kraljić, Dubravko Jelić, Dinko Žiher, Adam Cvrtila, Snježana Dragojević, Verona Sinković and Milan Mesić
Molecules 2019, 24(19), 3419; https://doi.org/10.3390/molecules24193419 - 20 Sep 2019
Cited by 19 | Viewed by 4806
Abstract
Autotaxin (ATX) is an extracellular enzyme that hydrolyses lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), which has a role in the mediation of inflammation, fibrosis and cancer. ATX is a drug target that has been the focus of many research groups during the last [...] Read more.
Autotaxin (ATX) is an extracellular enzyme that hydrolyses lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), which has a role in the mediation of inflammation, fibrosis and cancer. ATX is a drug target that has been the focus of many research groups during the last ten years. To date, only one molecule, Ziritaxestat (GLPG1690) has entered the clinic; it is currently in Phase 3 clinical trials for idiopathic pulmonary fibrosis. Other small molecules, with different binding modes, have been investigated as ATX inhibitors for cancer including compounds possessing a boronic acid motif such as HA155. In this work, we targeted new, improved inhibitors of ATX that mimic the important interactions of boronic acid using a benzoxaborole motif as the acidic warhead. Furthermore, we aimed to improve the plasma stability of the new compounds by using a more stable core spacer than that embedded in HA155. Compounds were synthesized, evaluated for their ATX inhibitory activity and ADME properties in vitro, culminating in a new benzoxaborole compound, 37, which retains the ATX inhibition activity of HA155 but has improved ADME properties (plasma protein binding, good kinetic solubility and rat/human plasma stability). Full article
Show Figures

Graphical abstract

13 pages, 4878 KiB  
Article
Drug Repurposing as an Antitumor Agent: Disulfiram-Mediated Carbonic Anhydrase 12 and Anion Exchanger 2 Modulation to Inhibit Cancer Cell Migration
by Soyoung Hwang, Dong Min Shin and Jeong Hee Hong
Molecules 2019, 24(18), 3409; https://doi.org/10.3390/molecules24183409 - 19 Sep 2019
Cited by 18 | Viewed by 3697
Abstract
Disulfiram has been used in the treatment of alcoholism and exhibits an anti-tumor effect. However, the intracellular mechanism of anti-tumor activity of Disulfiram remains unclear. In this study, we focused on the modulatory role of Disulfiram via oncogenic factor carbonic anhydrase CA12 and [...] Read more.
Disulfiram has been used in the treatment of alcoholism and exhibits an anti-tumor effect. However, the intracellular mechanism of anti-tumor activity of Disulfiram remains unclear. In this study, we focused on the modulatory role of Disulfiram via oncogenic factor carbonic anhydrase CA12 and its associated transporter anion exchanger AE2 in lung cancer cell line A549. The surface expression of CA12 and AE2 were decreased by Disulfiram treatment with a time-dependent manner. Disulfiram treatment did not alter the expression of Na+-bicarbonate cotransporters, nor did it affect autophagy regulation. The chloride bicarbonate exchanger activity of A549 cells was reduced by Disulfiram treatment in a time-dependent manner without change in the resting pH level. The expression and activity of AE2 and the expression of CA12 were also reduced by Disulfiram treatment in the breast cancer cell line. An invasion assay and cell migration assay revealed that Disulfiram attenuated the invasion and migration of A549 cells. In conclusion, the attenuation of AE2 and its supportive enzyme CA12, and the inhibitory effect on cell migration by Disulfiram treatment in cancer cells provided the molecular evidence supporting the potential of Disulfiram as an anticancer agent. Full article
Show Figures

Figure 1

19 pages, 664 KiB  
Communication
Design and Synthesis of Benzimidazole-Chalcone Derivatives as Potential Anticancer Agents
by Cheng-Ying Hsieh, Pi-Wen Ko, Yu-Jui Chang, Mohit Kapoor, Yu-Chuan Liang, Hsueh-Liang Chu, Hui-Hsien Lin, Jia-Cherng Horng and Ming-Hua Hsu
Molecules 2019, 24(18), 3259; https://doi.org/10.3390/molecules24183259 - 6 Sep 2019
Cited by 66 | Viewed by 7002
Abstract
Numerous reports have shown that conjugated benzimidazole derivatives possess various kinds of biological activities, including anticancer properties. In this report, we designed and synthesized 24 new molecules comprising a benzimidazole ring, arene, and alkyl chain-bearing cyclic moieties. The results showed that the N [...] Read more.
Numerous reports have shown that conjugated benzimidazole derivatives possess various kinds of biological activities, including anticancer properties. In this report, we designed and synthesized 24 new molecules comprising a benzimidazole ring, arene, and alkyl chain-bearing cyclic moieties. The results showed that the N-substituted benzimidazole derivatives bearing an alkyl chain and a nitrogen-containing 5- or 6-membered ring enhanced the cytotoxic effects on human breast adenocarcinoma (MCF-7) and human ovarian carcinoma (OVCAR-3) cell lines. Among the 24 synthesized compounds, (2E)-1-(1-(3-morpholinopropyl)-1H-benzimidazol-2 -yl)-3-phenyl-2-propen-1-one) (23a) reduced the proliferation of MCF-7 and OVCAR-3 cell lines demonstrating superior outcomes to those of cisplatin. Full article
Show Figures

Graphical abstract

16 pages, 5768 KiB  
Article
Synthesis, Evaluation, and Mechanism Study of New Tepotinib Derivatives as Antiproliferative Agents
by Niu-niu Zhang, Bai-jiao An, Yan Zhou, Xing-shu Li and Ming Yan
Molecules 2019, 24(6), 1173; https://doi.org/10.3390/molecules24061173 - 25 Mar 2019
Cited by 5 | Viewed by 5565
Abstract
Inspired by the potent inhibition activity of the c-Met (mesenchymal−epithelial transition factor) inhibitor Tepotinib, a series of new Tepotinib derivatives were synthesized and evaluated for their ability to act as antiproliferative agents to find the leading compounds with good activity and limited side [...] Read more.
Inspired by the potent inhibition activity of the c-Met (mesenchymal−epithelial transition factor) inhibitor Tepotinib, a series of new Tepotinib derivatives were synthesized and evaluated for their ability to act as antiproliferative agents to find the leading compounds with good activity and limited side effects. Among them, compound 31e exhibited potent antiproliferative activity (IC50 (50% inhibitory concentration) = 0.026 μΜ) against hepatic carcinoma 97H (human liver cancer cell) cells and, importantly, had very low inhibitory activity against normal cells. A mechanism study demonstrated that 31e induced G1 phase (First growth phase or G indicating gap) arrest, inhibited the phosphorylation of c-Met and its downstream signaling component, Akt (Protein Kinase B), and also inhibited the migration of hepatic carcinoma 97H cells. Full article
Show Figures

Graphical abstract

21 pages, 4107 KiB  
Article
Design, Synthesis, and Molecular Docking Study of Novel Heterocycles Incorporating 1,3,4-Thiadiazole Moiety as Potential Antimicrobial and Anticancer Agents
by Mohamed El-Naggar, Hanan A. Sallam, Safaa S. Shaban, Salwa S. Abdel-Wahab, Abd El-Galil E. Amr, Mohammad E. Azab, Eman S. Nossier and Mohamed A. Al-Omar
Molecules 2019, 24(6), 1066; https://doi.org/10.3390/molecules24061066 - 18 Mar 2019
Cited by 44 | Viewed by 5735
Abstract
A new series of 5-(3,5-dinitrophenyl)-1,3,4-thiadiazole derivatives were prepared and evaluated for their in vitro antimicrobial, antitumor, and DHFR inhibition activity. Compounds 9, 10, 13, and 16 showed strong and broad-spectrum antimicrobial activity comparable to Amoxicillin and Fluconazole as positive antibiotic [...] Read more.
A new series of 5-(3,5-dinitrophenyl)-1,3,4-thiadiazole derivatives were prepared and evaluated for their in vitro antimicrobial, antitumor, and DHFR inhibition activity. Compounds 9, 10, 13, and 16 showed strong and broad-spectrum antimicrobial activity comparable to Amoxicillin and Fluconazole as positive antibiotic and antifungal controls, respectively. Compounds 6, 14, and 15 exhibited antitumor activity against four human cancer cell lines, CCRF-CEM leukemia, HCT-15 colon, PC-3 prostate, and UACC-257 melanoma cell lines using Doxorubicin as a reference drug. Compounds 10, 13, 14, and 15 proved to be the most active DHFR inhibitors with an IC50 range of 0.04 ± 0.82–1.00 ± 0.85 µM, in comparison with Methotrexate (IC50 = 0.14 ± 1.38 µM). The highly potent DHFR inhibitors shared a similar molecular docking mode and made a critical hydrogen bond and arene‒arene interactions via Ser59 and Phe31 amino acid residues, respectively. Full article
Show Figures

Figure 1

15 pages, 3503 KiB  
Article
The Bispidinone Derivative 3,7-Bis-[2-(S)-amino-3-(1H-indol-3-yl)-propionyl]-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one Dihydrochloride Induces an Apoptosis-Mediated Cytotoxic Effect on Pancreatic Cancer Cells In Vitro
by Melanie J. Predebon, Danielle R. Bond, Joshua Brzozowski, Helen Jankowski, Fiona Deane, Mark Tarleton, Aron A. Shaw, Adam McCluskey, Michael C. Bowyer, Judith Weidenhofer and Christopher J. Scarlett
Molecules 2019, 24(3), 524; https://doi.org/10.3390/molecules24030524 - 31 Jan 2019
Cited by 6 | Viewed by 4287
Abstract
Pancreatic cancer (PC) is a complex, heterogeneous disease with a dismal prognosis. Current therapies have failed to improve survival outcomes, urging the need for discovery of novel targeted treatments. Bispidinone derivatives have yet to be investigated as cytotoxic agents against PC cells. The [...] Read more.
Pancreatic cancer (PC) is a complex, heterogeneous disease with a dismal prognosis. Current therapies have failed to improve survival outcomes, urging the need for discovery of novel targeted treatments. Bispidinone derivatives have yet to be investigated as cytotoxic agents against PC cells. The cytotoxic effect of four bispidinone derivatives (BisP1: 1,5-diphenyl-3,7-bis(2-hydroxyethyl)-3,7-diazabicyclo[3.3.1]nonan-9-one; BisP2: 3,7-bis-(2-(S)-amino-4-methylsulfanylbutyryl)-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one dihydrochloride; BisP3: [2-{7-[2-(S)-tert-butoxycarbonylamino-3-(1H-indol-3-yl)-propionyl]-9-oxo-1,5-diphenyl-3,7-diazabicyclo[3.3.1]non-3-yl}-1-(S)-(1H-indol-3-ylmethyl)-2-oxoethyl]-carbamic acid tertbutyl ester; BisP4: 3,7-bis-[2-(S)-amino-3-(1H-indol-3-yl)-propionyl]-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one dihydrochloride) was assessed against PC cell lines (MiaPaca-2, CFPAC-1 and BxPC-3). Cell viability was assessed using a Cell Counting Kit-8 (CCK-8) colorimetric assay, while apoptotic cell death was confirmed using fluorescence microscopy and flow cytometry. Initial viability screening revealed significant cytotoxic activity from BisP4 treatment (1 µM–100 µM) on all three cell lines, with IC50 values for MiaPaca-2, BxPC-3, and CFPAC-1 16.9 µM, 23.7 µM, and 36.3 µM, respectively. Cytotoxic treatment time-response (4 h, 24 h, and 48 h) revealed a 24 h treatment time was sufficient to produce a cytotoxic effect on all cell lines. Light microscopy evaluation (DAPI staining) of BisP4 treated MiaPaca-2 PC cells revealed dose-dependent characteristic apoptotic morphological changes. In addition, flow cytometry confirmed BisP4 induced apoptotic cell death induction of activated caspase-3/-7. The bispidinone derivative BisP4 induced an apoptosis-mediated cytotoxic effect on MiaPaca-2 cell lines and significant cytotoxicity on CFPAC-1 and BxPC-3 cell lines. Further investigations into the precise cellular mechanisms of action of this class of compounds are necessary for potential development into pre-clinical trials. Full article
Show Figures

Figure 1

18 pages, 2208 KiB  
Article
Design, Synthesis, Anticancer Evaluation and Molecular Modeling of Novel Estrogen Derivatives
by Abd El-Galil E. Amr, Elsayed A. Elsayed, Mohamed A. Al-Omar, Hanan O. Badr Eldin, Eman S. Nossier and Mohamed M. Abdallah
Molecules 2019, 24(3), 416; https://doi.org/10.3390/molecules24030416 - 24 Jan 2019
Cited by 32 | Viewed by 4615
Abstract
A series of estrone derivatives 38 was designed and synthesized using estrone arylmethylenes 2a,b as starting materials and their structures were confirmed by different spectral data and elemental analyses. All the newly synthesized compounds exhibited potent in vitro and [...] Read more.
A series of estrone derivatives 38 was designed and synthesized using estrone arylmethylenes 2a,b as starting materials and their structures were confirmed by different spectral data and elemental analyses. All the newly synthesized compounds exhibited potent in vitro and in vivo cytotoxic activities against breast cancer cell lines. In addition, all compounds were subjected to in vitro and in vivo inhibition assays for EGFR and VEGFR-2 kinases as well as p53 ubiquitination activity to obtain more details about their mechanism of action. Based on the promising results, a molecular docking study was investigated for the most representative compound 5a against the two targets, EGFR and VEGFR-2 kinases, to assess its binding affinity, hoping to rationalize and obtain potent anticancer agents in the future. Full article
Show Figures

Figure 1

2018

Jump to: 2023, 2021, 2020, 2019, 2017, 2016, 2015, 2014

18 pages, 2707 KiB  
Article
Design, Synthesis and Docking Studies of Novel Macrocyclic Pentapeptides as Anticancer Multi-Targeted Kinase Inhibitors
by Abd El-Galil E. Amr, Mohamed H. Abo-Ghalia, Gaber O. Moustafa, Mohamed A. Al-Omar, Eman S. Nossier and Elsayed A. Elsayed
Molecules 2018, 23(10), 2416; https://doi.org/10.3390/molecules23102416 - 20 Sep 2018
Cited by 58 | Viewed by 4836
Abstract
A series of macrocyclic pyrido-pentapeptide candidates 26 were synthesized by using N,N-bis-[1-carboxy-2-(benzyl)]-2,6-(diaminocarbonyl)pyridine 1a,b as starting material. Structures of the newly synthesized compounds were established by IR, 1H and 13C-NMR, and MS spectral data and [...] Read more.
A series of macrocyclic pyrido-pentapeptide candidates 26 were synthesized by using N,N-bis-[1-carboxy-2-(benzyl)]-2,6-(diaminocarbonyl)pyridine 1a,b as starting material. Structures of the newly synthesized compounds were established by IR, 1H and 13C-NMR, and MS spectral data and elemental analysis. The in-vitro cytotoxicity activity was investigated for all compounds against MCF-7 and HepG-2 cell lines and the majority of the compounds showed potent anticancer activity against the tested cell lines in comparison with the reference drugs. Out of the macrocyclic pyrido-pentapeptide based compounds, 5c showed encouraging inhibitory activity on MCF-7 and HepG-2 cell lines with IC50 values 9.41 ± 1.25 and 7.53 ± 1.33 μM, respectively. Interestingly, 5c also demonstrated multitarget profile and excellent inhibitory activity towards VEGFR-2, CDK-2 and PDGFRβ kinases. Furthermore, molecular modeling studies of the compound 5c revealed its possible binding modes into the active sites of those kinases. Full article
Show Figures

Figure 1

19 pages, 2680 KiB  
Article
Synthesis, Molecular Docking and Anticancer Activity of Diflunisal Derivatives as Cyclooxygenase Enzyme Inhibitors
by Göknil Pelin Coşkun, Teodora Djikic, Taha Bartu Hayal, Nezaket Türkel, Kemal Yelekçi, Fikrettin Şahin and Ş. Güniz Küçükgüzel
Molecules 2018, 23(8), 1969; https://doi.org/10.3390/molecules23081969 - 6 Aug 2018
Cited by 24 | Viewed by 5930
Abstract
Cyclooxygenase enzymes play a vital role in inflammatory pathways in the human body. Apart from their relation with inflammation, the additional involvement of COX-2 enzyme with cancer activity was recently discovered. In some cancer types the level of COX-2 enzyme is increased indicating [...] Read more.
Cyclooxygenase enzymes play a vital role in inflammatory pathways in the human body. Apart from their relation with inflammation, the additional involvement of COX-2 enzyme with cancer activity was recently discovered. In some cancer types the level of COX-2 enzyme is increased indicating that this enzyme could be a suitable target for cancer therapy. Based on these findings, we have synthesized some new diflunisal thiosemicarbazides and 1,2,4-triazoles and tested them against androgen-independent prostate adenocarcinoma (PC-3), colon carcinoma (HCT-116), human breast cancer (T47D), breast carcinoma (MCF7) and human embryonic kidney (HEK-293) cell lines. Specifically, the diflunisal and thiosemicarbazide functionality are combined during the synthesis of original compounds anticipating a potency enhancement. Compounds 6, 10, 15 and 16 did not show cytotoxic effects for the HEK293 cell line. Among them, compounds 15 and 16 demonstrated anticancer activity for the breast cancer cell line T47D, whereas compounds 6 and 10 which are thiosemicarbazide derivatives displayed anti-tumourigenic activity against the PC-3 cell line, consistent with the literature. However, no activity was observed for the HCT-116 cancer cell line with the tested thiosemicarbazide derivatives. Only compound 16 displayed activity against the HCT-116 cell line. Therefore, it was speculated that the diflunisal and thiosemicarbazide functionalities potentiate anticancer activity on prostate cancer and the thiosemicarbazide functionality decreases the anticancer activity of diflunisal on colon cancer cell lines. In order to gain insight into the anticancer activity and COX-2 inhibition, molecular docking studies were carried out for COX-1 and COX-2 enzymes utilizing the newly synthesized compounds 15, and 16. Both 15 and 16 showed high selectivity and affinity toward COX-2 isozyme over COX-1, which is in agreement with the experimental results. Full article
Show Figures

Figure 1

14 pages, 25666 KiB  
Article
Identification by Molecular Docking of Homoisoflavones from Leopoldia comosa as Ligands of Estrogen Receptors
by Fedora Grande, Bruno Rizzuti, Maria A. Occhiuzzi, Giuseppina Ioele, Teresa Casacchia, Fabrizio Gelmini, Rita Guzzi, Antonio Garofalo and Giancarlo Statti
Molecules 2018, 23(4), 894; https://doi.org/10.3390/molecules23040894 - 12 Apr 2018
Cited by 57 | Viewed by 6576
Abstract
The physiological responses to estrogen hormones are mediated within specific tissues by at least two distinct receptors, ERα and ERβ. Several natural and synthetic molecules show activity by interacting with these proteins. In particular, a number of vegetal compounds known as phytoestrogens shows [...] Read more.
The physiological responses to estrogen hormones are mediated within specific tissues by at least two distinct receptors, ERα and ERβ. Several natural and synthetic molecules show activity by interacting with these proteins. In particular, a number of vegetal compounds known as phytoestrogens shows estrogenic or anti-estrogenic activity. The majority of these compounds belongs to the isoflavones family and the most representative one, genistein, shows anti-proliferative effects on various hormone-sensitive cancer cells, including breast, ovarian and prostate cancer. In this work we describe the identification of structurally related homoisoflavones isolated from Leopoldia comosa (L.) Parl. (L. comosa), a perennial bulbous plant, potentially useful as hormonal substitutes or complements in cancer treatments. Two of these compounds have been selected as potential ligands of estrogen receptors (ERs) and the interaction with both isoforms of estrogen receptors have been investigated through molecular docking on their crystallographic structures. The results provide evidence of the binding of these compounds to the target receptors and their interactions with key residues of the active sites of the two proteins, and thus they could represent suitable leads for the development of novel tools for the dissection of ER signaling and the development of new pharmacological treatments in hormone-sensitive cancers. Full article
Show Figures

Graphical abstract

24 pages, 32541 KiB  
Review
Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness
by Rossella Farra, Francesco Musiani, Francesca Perrone, Maja Čemažar, Urška Kamenšek, Federica Tonon, Michela Abrami, Aleš Ručigaj, Mario Grassi, Gabriele Pozzato, Deborah Bonazza, Fabrizio Zanconati, Giancarlo Forte, Maguie El Boustani, Lucia Scarabel, Marica Garziera, Concetta Russo Spena, Lucia De Stefano, Barbara Salis, Giuseppe Toffoli, Flavio Rizzolio, Gabriele Grassi and Barbara Dapasadd Show full author list remove Hide full author list
Molecules 2018, 23(4), 777; https://doi.org/10.3390/molecules23040777 - 28 Mar 2018
Cited by 15 | Viewed by 6847
Abstract
Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules [...] Read more.
Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work. Full article
Show Figures

Figure 1

21 pages, 931 KiB  
Review
Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review
by Darija Cör, Željko Knez and Maša Knez Hrnčič
Molecules 2018, 23(3), 649; https://doi.org/10.3390/molecules23030649 - 13 Mar 2018
Cited by 290 | Viewed by 28519
Abstract
Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show [...] Read more.
Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects. Full article
Show Figures

Graphical abstract

16 pages, 2238 KiB  
Article
Half-Sandwich Ru(II) and Os(II) Bathophenanthroline Complexes Containing a Releasable Dichloroacetato Ligand
by Pavel Štarha, Zdeněk Trávníček, Ján Vančo and Zdeněk Dvořák
Molecules 2018, 23(2), 420; https://doi.org/10.3390/molecules23020420 - 14 Feb 2018
Cited by 21 | Viewed by 4691
Abstract
We report on the preparation and thorough characterization of cytotoxic half-sandwich complexes [Ru(η6-pcym)(bphen)(dca)]PF6 (Ru-dca) and [Os(η6-pcym)(bphen)(dca)]PF6 (Os-dca) containing dichloroacetate(1–) (dca) as the releasable O-donor [...] Read more.
We report on the preparation and thorough characterization of cytotoxic half-sandwich complexes [Ru(η6-pcym)(bphen)(dca)]PF6 (Ru-dca) and [Os(η6-pcym)(bphen)(dca)]PF6 (Os-dca) containing dichloroacetate(1–) (dca) as the releasable O-donor ligand bearing its own cytotoxicity; pcym = 1-methyl-4-(propan-2-yl)benzene (p-cymene), bphen = 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline). Complexes Ru-dca and Os-dca hydrolyzed in the water-containing media, which led to the dca ligand release (supported by 1H NMR and electrospray ionization mass spectra). Mass spectrometry studies revealed that complexes Ru-dca and Os-dca do not interact covalently with the model proteins cytochrome c and lysozyme. Both complexes exhibited slightly higher in vitro cytotoxicity (IC50 = 3.5 μM for Ru-dca, and 2.6 μM for Os-dca) against the A2780 human ovarian carcinoma cells than cisplatin (IC50 = 5.9 μM), while their toxicity on the healthy human hepatocytes was found to be IC50 = 19.1 μM for Ru-dca and IC50 = 19.7 μM for Os-dca. Despite comparable cytotoxicity of complexes Ru-dca and Os-dca, both the complexes modified the cell cycle, mitochondrial membrane potential, and mitochondrial cytochrome c release by a different way, as revealed by flow cytometry experiments. The obtained results point out the different mechanisms of action between the complexes. Full article
Show Figures

Graphical abstract

2017

Jump to: 2023, 2021, 2020, 2019, 2018, 2016, 2015, 2014

1803 KiB  
Article
Design, Synthesis and Cytotoxic Evaluation of Novel Chalcone Derivatives Bearing Triazolo[4,3-a]-quinoxaline Moieties as Potent Anticancer Agents with Dual EGFR Kinase and Tubulin Polymerization Inhibitory Effects
by Mohamed Alswah, Ashraf H. Bayoumi, Kamal Elgamal, Ahmed Elmorsy, Saleh Ihmaid and Hany E. A. Ahmed
Molecules 2018, 23(1), 48; https://doi.org/10.3390/molecules23010048 - 27 Dec 2017
Cited by 83 | Viewed by 7378
Abstract
A series of hybrid of triazoloquinoxaline-chalcone derivatives 7ak were designed, synthesized, fully characterized, and evaluated for their cytotoxic activity against three target cell lines: human breast adenocarcinoma (MCF-7), human colon carcinoma (HCT-116), and human hepatocellular carcinoma (HEPG-2). The preliminary results showed [...] Read more.
A series of hybrid of triazoloquinoxaline-chalcone derivatives 7ak were designed, synthesized, fully characterized, and evaluated for their cytotoxic activity against three target cell lines: human breast adenocarcinoma (MCF-7), human colon carcinoma (HCT-116), and human hepatocellular carcinoma (HEPG-2). The preliminary results showed that some of these chalcones like 7bc, and 7eg exhibited significant antiproliferative effects against most of the cell lines, with selective or non-selective behavior, indicated by IC50 values in the 1.65 to 34.28 µM range. In order to investigate the mechanistic aspects of these active compounds, EGFR TK and tubulin inhibitory activities were measured as further biological assays. The EGFR TK assay results revealed that the derivatives 7ac, 7e, and 7g could inhibit the EGFR TK in the submicromolar range (0.093 to 0.661 µM). Moreover, an antitubulin polymerization effect was noted for the active derivatives compared to the reference drug colchicine, with compounds 7e and 7g displaying 14.7 and 8.4 micromolar activity, respectively. Furthermore, a molecular docking study was carried out to explain the observed effects and the binding modes of these chalcones with the EGFR TK and tubulin targets. Full article
Show Figures

Graphical abstract

4317 KiB  
Article
rLj-RGD3 Suppresses the Growth of HeyA8 Cells in Nude Mice
by Yuanyuan Zheng, Li Lv, Longda Yi, Rui Wu, Rong Xiao and Jihong Wang
Molecules 2017, 22(12), 2234; https://doi.org/10.3390/molecules22122234 - 15 Dec 2017
Cited by 6 | Viewed by 4698
Abstract
In the previous study, rLj-RGD3, a recombinant toxin protein which contains three RGD motifs, was reported to not only inhibit the proliferation of an ovarian cancer cell line, HeyA8 cells, by inducing apoptosis, but also block their adhesion, migration and invasion processes. However, [...] Read more.
In the previous study, rLj-RGD3, a recombinant toxin protein which contains three RGD motifs, was reported to not only inhibit the proliferation of an ovarian cancer cell line, HeyA8 cells, by inducing apoptosis, but also block their adhesion, migration and invasion processes. However, whether rLj-RGD3 could also suppress the tumor growth in HeyA8 xenografted mice has not been reported yet. In the present study, rLj-RGD3 was intraperitoneally injected in the nude mice bearing HeyA8 tumors. Compared with the control group (normal saline), rLj-RGD3 inhibited the tumor growth significantly in the HeyA8 xenografted mice in a dose-dependent manner without affecting their body weights. Based on the H&E, Hoechst 33258 and TUNEL staining assays, as well as western blot analysis, rLj-RGD3 reduced the weight and volume of the solid tumors, probably by disturbing the tissue structure, inducing apoptosis and suppressing the FAK/PI3K/AKT pathway. Most importantly, rLj-RGD3 was found to prolong the survival days of the ovarian tumor xenografted mice, which suggested rLj-RGD3 might act as an effective and safe drug to treat ovarian cancer patients. Full article
Show Figures

Graphical abstract

2342 KiB  
Article
Synthesis and In Vitro Antiproliferative Activity of 11-Substituted Neocryptolepines with a Branched ω-Aminoalkylamino Chain
by Elkhabiry Shaban, Marta Świtalska, Li Wang, Ning Wang, Fan Xiu, Ikuya Hayashi, Tran Anh Ngoc, Sachie Nagae, Samah El-Ghlban, Shiho Shimoda, Ahmed Abdel Aleem El Gokha, Ibrahim El Tantawy El Sayed, Joanna Wietrzyk and Tsutomu Inokuchi
Molecules 2017, 22(11), 1954; https://doi.org/10.3390/molecules22111954 - 12 Nov 2017
Cited by 9 | Viewed by 4476
Abstract
Neocryptolepine, which is a kind of tetracyclic indoloquinoline alkaloid, exhibits the inhibition of topoisomerase II and shows antiproliferative activity. The present study describes the synthesis and antiproliferative evaluation of several neocryptolepine analogues carrying a branched, functionalized dibasic side chain at C11. These 2-substituted [...] Read more.
Neocryptolepine, which is a kind of tetracyclic indoloquinoline alkaloid, exhibits the inhibition of topoisomerase II and shows antiproliferative activity. The present study describes the synthesis and antiproliferative evaluation of several neocryptolepine analogues carrying a branched, functionalized dibasic side chain at C11. These 2-substituted 5-methyl-indolo[2,3-b]quinoline derivatives were prepared by nucleophilic aromatic substitution (SNAr) of 11-chloroneocryptolepines with appropriate 1,2- and 1,3-diamines. Some of the 11-(ω-aminoalkylamino) derivatives were further transformed into 11-ureido and thioureido analogues. Many of the prepared neocryptolepine derivatives showed submicromolar antiproliferative activity against the human leukemia MV4-11 cell line. Among them, 11-(3-amino-2-hydroxy)propylamino derivatives 2h and 2k were the most cytotoxic with a mean IC50 value of 0.042 μM and 0.057 μM against the MV4-11 cell line, 0.197 μM and 0.1988 μM against the A549 cell line, and 0.138 μM and 0.117 μM against the BALB/3T3 cell line, respectively. Full article
Show Figures

Figure 1

2305 KiB  
Article
Synthesis and Antitumor Activity of Novel Arylpiperazine Derivatives Containing the Saccharin Moiety
by Hong Chen, Bing-Bing Xu, Tao Sun, Zhan Zhou, Hui-Yuan Ya and Mu Yuan
Molecules 2017, 22(11), 1857; https://doi.org/10.3390/molecules22111857 - 29 Oct 2017
Cited by 13 | Viewed by 4528
Abstract
Prostate cancer is a major public health problem worldwide. For the development of potential anti-prostate cancer agents, a series of novel arylpiperazine derivatives containing the saccharin moiety based on previous studies was designed, synthesized, and evaluated in prostate (PC-3, LNCaP, and DU145) cancer [...] Read more.
Prostate cancer is a major public health problem worldwide. For the development of potential anti-prostate cancer agents, a series of novel arylpiperazine derivatives containing the saccharin moiety based on previous studies was designed, synthesized, and evaluated in prostate (PC-3, LNCaP, and DU145) cancer cell lines for their anticancer activities. The majority of the compounds exhibited excellent selective activity for the tested cancer cells. Compounds 4 and 12 exhibited strong cytotoxic activities against DU145 cells (half maximal inhibitory concentration (IC50) < 2 μM). The structure–activity relationship (SAR) of these arylpiperazine derivatives was also discussed based on the obtained experimental data. This work provides a potential lead compound for anticancer agent development focusing on prostate cancer therapy. Full article
Show Figures

Figure 1

1745 KiB  
Article
Berberine Activates Aryl Hydrocarbon Receptor but Suppresses CYP1A1 Induction through miR-21-3p Stimulation in MCF-7 Breast Cancer Cells
by Sheng-Nan Lo, Chun-Wei Wang, Yueh-Shieh Chen, Chiung-Chiao Huang, Tian-Shung Wu, Lih-Ann Li, I-Jung Lee and Yune-Fang Ueng
Molecules 2017, 22(11), 1847; https://doi.org/10.3390/molecules22111847 - 28 Oct 2017
Cited by 27 | Viewed by 6109
Abstract
Berberine and the methylenedioxy ring-opening derivatives palmatine and jatrorrhizine are active ingredients in immunomodulatory plants, such as goldenseal. This study aimed to illustrate the effects of protoberberines on aryl hydrocarbon receptor (AhR) activation and cytochrome P450 (CYP) 1 in the estrogen receptor (ER)α(+) [...] Read more.
Berberine and the methylenedioxy ring-opening derivatives palmatine and jatrorrhizine are active ingredients in immunomodulatory plants, such as goldenseal. This study aimed to illustrate the effects of protoberberines on aryl hydrocarbon receptor (AhR) activation and cytochrome P450 (CYP) 1 in the estrogen receptor (ER)α(+) MCF-7 breast cancer cells. Among protoberberines at non-cytotoxic concentrations (≤10 μM), berberine had the most potent and statistically significant effects on AhR activation and CYP1A1/1A2/1B1 mRNA induction. The 24-h exposure to 10 μM berberine did not change CYP1A1 mRNA stability, protein level and function. Berberine significantly increased micro RNA (miR)-21-3p by 36% and the transfection of an inhibitor of miR-21-3p restored the induction of CYP1A1 protein with a 50% increase. These findings demonstrate that the ring opening of the methylenedioxyl moiety in berberine decreased AhR activation in MCF-7 cells. While CYP1A1 mRNA was elevated, berberine-induced miR-21-3p suppressed the increase of functional CYP1A1 protein expression. Full article
Show Figures

Graphical abstract

4059 KiB  
Article
Studies on the Synthesis, Photophysical and Biological Evaluation of Some Unsymmetrical Meso-Tetrasubstituted Phenyl Porphyrins
by Rica Boscencu, Gina Manda, Natalia Radulea, Radu Petre Socoteanu, Laura Cristina Ceafalan, Ionela Victoria Neagoe, Isabel Ferreira Machado, Selma Huveyda Basaga and Luís Filipe Vieira Ferreira
Molecules 2017, 22(11), 1815; https://doi.org/10.3390/molecules22111815 - 25 Oct 2017
Cited by 18 | Viewed by 5207
Abstract
Abstract: We designed three unsymmetrical meso-tetrasubstituted phenyl porphyrins for further development as theranostic agents for cancer photodynamic therapy (PDT): 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (P2.2), Zn(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Zn(II)2.2) and Cu(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Cu(II)2.2). The porphyrinic compounds were synthesized and their structures were confirmed by elemental analysis, FT-IR, UV-Vis, EPR [...] Read more.
Abstract: We designed three unsymmetrical meso-tetrasubstituted phenyl porphyrins for further development as theranostic agents for cancer photodynamic therapy (PDT): 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (P2.2), Zn(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Zn(II)2.2) and Cu(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Cu(II)2.2). The porphyrinic compounds were synthesized and their structures were confirmed by elemental analysis, FT-IR, UV-Vis, EPR and NMR. The compounds had a good solubility in polar/nonpolar media. P2.2 and, to a lesser extent, Zn(II)2.2 were fluorescent, albeit with low fluoresence quantum yields. P2.2 and Zn(II)2.2 exhibited PDT-acceptable values of singlet oxygen generation. A “dark” cytotoxicity study was performed using cells that are relevant for the tumor niche (HT-29 colon carcinoma cells and L929 fibroblasts) and for blood (peripheral mononuclear cells). Cellular uptake of fluorescent compounds, cell viability/proliferation and death were evaluated. P2.2 was highlighted as a promising theranostic agent for PDT in solid tumors considering that P2.2 generated PDT-acceptable singlet oxygen yields, accumulated into tumor cells and less in blood cells, exhibited good fluorescence within cells for imagistic detection, and had no significant cytotoxicity in vitro against tumor and normal cells. Complexing of P2.2 with Zn(II) or Cu(II) altered several of its PDT-relevant properties. These are consistent arguments for further developing P2.2 in animal models of solid tumors for in vivo PDT. Full article
Show Figures

Graphical abstract

2651 KiB  
Article
Pratol, an O-Methylated Flavone, Induces Melanogenesis in B16F10 Melanoma Cells via p-p38 and p-JNK Upregulation
by You Chul Chung, Seoyeon Kim, Jin Hwa Kim, Geun Soo Lee, Jung No Lee, Nam Ho Lee and Chang-Gu Hyun
Molecules 2017, 22(10), 1704; https://doi.org/10.3390/molecules22101704 - 11 Oct 2017
Cited by 31 | Viewed by 7906
Abstract
Tyrosinase is the rate-limiting enzyme critical for melanin synthesis. It controls pigmentation in the skin. Activation of tyrosinase is currently the most common approach in the development of tanning and haircare products. Pratol is a 7-hydroxy-4-methoxyflavone found in Trifolium pratense. In this [...] Read more.
Tyrosinase is the rate-limiting enzyme critical for melanin synthesis. It controls pigmentation in the skin. Activation of tyrosinase is currently the most common approach in the development of tanning and haircare products. Pratol is a 7-hydroxy-4-methoxyflavone found in Trifolium pratense. In this study, we investigated the effects of pratol on melanogenesis. We also studied the mechanism of action of pratol in B16F10 mouse melanoma cells. The cells were treated with various concentrations (6.25, 12.5, 25, and 50 μM) of pratol to observe its effects. The results showed that pratol significantly increased melanin content and tyrosinase activity in the cells without being cytotoxic. In addition, pratol strongly increased the expression of tyrosinase and tyrosinase-related protein-1 and 2 by enhancing the expression of microphthalmia-associated transcription factor. Furthermore, pratol stimulated melanogenesis via the phosphorylation of p38, c-Jun N-terminal kinases (JNK), and extracellular signal–regulated kinase (ERK). The findings from an assay searching for the inhibitor revealed that SB203580 (a specific p38 inhibitor) or SP600125 (a p-JNK inhibitor) attenuated pratol-induced cellular tyrosinase activity whereas PD98059 (an ERK inhibitor) did not. Additionally, pratol interfered with the phosphorylation of p-AKT. We also found that pratol-induced melanogenesis was reversed by H89, which is a specific protein kinase A inhibitor. The results suggest that, owing to its multi-functional properties, pratol may be a potential tanning agent or a therapeutic agent for hair depigmentation in the cosmetic industry. Full article
Show Figures

Figure 1

5304 KiB  
Article
Inhibitory Effects of Total Triterpenoid Saponins Isolated from the Seeds of the Tea Plant (Camellia sinensis) on Human Ovarian Cancer Cells
by Ling-Yan Jia, Xue-Jin Wu, Ying Gao, Gary O. Rankin, Alexa Pigliacampi, Heather Bucur, Bo Li, You-Ying Tu and Yi Charlie Chen
Molecules 2017, 22(10), 1649; https://doi.org/10.3390/molecules22101649 - 30 Sep 2017
Cited by 28 | Viewed by 6733
Abstract
Ovarian cancer is regarded as one of the most severe malignancies for women in the world. Death rates have remained steady over the past five decades, due to the undeniable inefficiency of the current treatment in preventing its recurrence and death. The development [...] Read more.
Ovarian cancer is regarded as one of the most severe malignancies for women in the world. Death rates have remained steady over the past five decades, due to the undeniable inefficiency of the current treatment in preventing its recurrence and death. The development of new effective alternative agents for ovarian cancer treatment is becoming increasingly critical. Tea saponins (TS) are triterpenoidsaponins composed of sapogenins, glycosides, and organic acids, which possess a variety of pharmacological activities, and have shown promise in the anti-cancer field. Through cell CellTiter 96® Aqueous One Solution Cell Proliferation assay (MTS) assay, colony formation, Hoechst 33342 staining assay, caspase-3/7 activities, flow cytometry for apoptosis analysis, and Western blot, we observed that TS isolated from the seeds of tea plants, Camellia sinensis, exhibited strong anti-proliferation inhibitory effects on OVCAR-3 and A2780/CP70 ovarian cancer cell lines. Our results indicate that TS may selectivity inhibit human ovarian cancer cells by mediating apoptosis through the extrinsic pathway, and initiating anti-angiogenesis via decreased VEGF protein levels in a HIF-1α-dependent pathway. Our data suggests that, in the future, TS could be incorporated into a potential therapeutic agent against human ovarian cancer. Full article
Show Figures

Figure 1

2938 KiB  
Article
Anticarcinogenic Effect of Spices Due to Phenolic and Flavonoid Compounds—In Vitro Evaluation on Prostate Cells
by Zuzana Lackova, Hana Buchtelova, Zaneta Buchtova, Borivoj Klejdus, Zbynek Heger, Martin Brtnicky, Jindrich Kynicky, Ondrej Zitka and Vojtech Adam
Molecules 2017, 22(10), 1626; https://doi.org/10.3390/molecules22101626 - 28 Sep 2017
Cited by 9 | Viewed by 6631
Abstract
This study shows the effects of spices, and their phenolic and flavonoid compounds, on prostate cell lines (PNT1A, 22RV1 and PC3). The results of an MTT assay on extracts from eight spices revealed the strongest inhibitory effects were from black pepper and caraway [...] Read more.
This study shows the effects of spices, and their phenolic and flavonoid compounds, on prostate cell lines (PNT1A, 22RV1 and PC3). The results of an MTT assay on extracts from eight spices revealed the strongest inhibitory effects were from black pepper and caraway seed extracts. The strongest inhibitory effect on prostatic cells was observed after the application of extracts of spices in concentration of 12.5 mg·mL−1. An LC/MS analysis identified that the most abundant phenolic and flavonoid compounds in black pepper are 3,4-dihydroxybenzaldehyde and naringenin chalcone, while the most abundant phenolic and flavonoid compounds in caraway seeds are neochlorogenic acid and apigenin. Using an MTT assay for the phenolic and flavonoid compounds from spices, we identified the IC50 value of ~1 mmol·L−1 PNT1A. The scratch test demonstrated that the most potent inhibitory effect on PNT1A, 22RV1 and PC3 cells is from the naringenin chalcone contained in black pepper. From the spectrum of compounds assessed, the naringenin chalcone contained in black pepper was identified as the most potent inhibitor of the growth of prostate cells. Full article
Show Figures

Graphical abstract

5312 KiB  
Article
Identification of Novel Bisbenzimidazole Derivatives as Anticancer Vacuolar (H+)-ATPase Inhibitors
by Renukadevi Patil, Arpita Kulshrestha, Anjali Tikoo, Sara Fleetwood, Gajendra Katara, Bala Kolli, William Seibel, Alice Gilman-Sachs, Shivaputra A. Patil and Kenneth D. Beaman
Molecules 2017, 22(9), 1559; https://doi.org/10.3390/molecules22091559 - 16 Sep 2017
Cited by 10 | Viewed by 6417
Abstract
The vacuolar (H+)-ATPases (V-ATPases) are a family of ATP-driven proton pumps and they have been associated with cancer invasion, metastasis, and drug resistance. Despite the clear involvement of V-ATPases in cancer, the therapeutic use of V-ATPase-targeting small molecules has not reached [...] Read more.
The vacuolar (H+)-ATPases (V-ATPases) are a family of ATP-driven proton pumps and they have been associated with cancer invasion, metastasis, and drug resistance. Despite the clear involvement of V-ATPases in cancer, the therapeutic use of V-ATPase-targeting small molecules has not reached human clinical trials to date. Thus, V-ATPases are emerging as important targets for the identification of potential novel therapeutic agents. We identified a bisbenzimidazole derivative (V) as an initial hit from a similarity search using four known V-ATPase inhibitors (IIV). Based on the initial hit (V), we designed and synthesized a focused set of novel bisbenzimidazole analogs (2ae). All newly prepared compounds have been screened for selected human breast cancer (MDA-MB-468, MDA-MB-231, and MCF7) and ovarian cancer (A2780, Cis-A2780, and PA-1) cell lines, along with the normal breast epithelial cell line, MCF10A. The bisbenzimidazole derivative (2e) is active against all cell lines tested. Remarkably, it demonstrated high cytotoxicity against the triple-negative breast cancer (TNBC) cell line, MDA-MB-468 (IC50 = 0.04 ± 0.02 μM). Additionally, it has been shown to inhibit the V-ATPase pump that is mainly responsible for acidification. To the best of our knowledge the bisbenzimidazole pharmacophore has been identified as the first V-ATPase inhibitor in its class. These results strongly suggest that the compound 2e could be further developed as a potential anticancer V-ATPase inhibitor for breast cancer treatment. Full article
Show Figures

Figure 1

1823 KiB  
Article
Design and Antiproliferative Evaluation of Novel Sulfanilamide Derivatives as Potential Tubulin Polymerization Inhibitors
by Dong-Jun Fu, Ji-Feng Liu, Ruo-Han Zhao, Jia-Huan Li, Sai-Yang Zhang and Yan-Bing Zhang
Molecules 2017, 22(9), 1470; https://doi.org/10.3390/molecules22091470 - 5 Sep 2017
Cited by 21 | Viewed by 5441
Abstract
A series of sulfanilamide-1,2,3-triazole hybrids were designed by a molecular hybridization strategy and evaluated for antiproliferative activity against three selected cancer cell lines (MGC-803, MCF-7 and PC-3). The detailed structure-activity relationships for these sulfanilamide-1,2,3-triazole hybrids were investigated. All these sulfanilamide-1,2,3-triazole hybrids exhibited moderate [...] Read more.
A series of sulfanilamide-1,2,3-triazole hybrids were designed by a molecular hybridization strategy and evaluated for antiproliferative activity against three selected cancer cell lines (MGC-803, MCF-7 and PC-3). The detailed structure-activity relationships for these sulfanilamide-1,2,3-triazole hybrids were investigated. All these sulfanilamide-1,2,3-triazole hybrids exhibited moderate to potent activity against all cell lines. In particular 4-methyl-N-((1-(3-phenoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)benzenesulfonamide (11f) showed the most potent inhibitory effect against PC-3 cells, with an IC50 value of 4.08 μM. Furthermore, the tubulin polymerization inhibitory activity in vitro of compound 11f was 2.41 μM. These sulfanilamide hybrids might serve as bioactive fragments for developing more potent antiproliferative agents. Full article
Show Figures

Graphical abstract

2210 KiB  
Review
Sigma Receptor (σR) Ligands with Antiproliferative and Anticancer Activity
by Markos-Orestis Georgiadis, Olga Karoutzou, Angeliki-Sofia Foscolos and Ioannis Papanastasiou
Molecules 2017, 22(9), 1408; https://doi.org/10.3390/molecules22091408 - 25 Aug 2017
Cited by 40 | Viewed by 8269
Abstract
Sigma receptor (σR) ligands have proven to be useful as cancer diagnostics and anticancer therapeutics and their ligands have been developed as molecular probes in oncology. Moreover, various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have [...] Read more.
Sigma receptor (σR) ligands have proven to be useful as cancer diagnostics and anticancer therapeutics and their ligands have been developed as molecular probes in oncology. Moreover, various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have exhibited promising results against numerous human and rodent cancers and are investigated under preclinical and clinical study trials, indicating a new category of drugs in cancer therapy. Full article
Show Figures

Figure 1

6744 KiB  
Article
Anticancer Activity of Ramalin, a Secondary Metabolite from the Antarctic Lichen Ramalina terebrata, against Colorectal Cancer Cells
by Sung-Suk Suh, Tai Kyoung Kim, Jung Eun Kim, Ju-Mi Hong, Trang Thu Thi Nguyen, Se Jong Han, Ui Joung Youn, Joung Han Yim and Il-Chan Kim
Molecules 2017, 22(8), 1361; https://doi.org/10.3390/molecules22081361 - 17 Aug 2017
Cited by 26 | Viewed by 7084
Abstract
Colorectal cancer is a leading cause of death worldwide and occurs through the highly complex coordination of multiple cellular pathways, resulting in carcinogenesis. Recent studies have increasingly revealed that constituents of lichen extracts exhibit potent pharmaceutical activities, including anticancer activity against various cancer [...] Read more.
Colorectal cancer is a leading cause of death worldwide and occurs through the highly complex coordination of multiple cellular pathways, resulting in carcinogenesis. Recent studies have increasingly revealed that constituents of lichen extracts exhibit potent pharmaceutical activities, including anticancer activity against various cancer cells, making them promising candidates for new anticancer therapeutic drugs. The main objective of this study was to evaluate the anticancer capacities of ramalin, a secondary metabolite from the Antarctic lichen Ramalina terebrata, in the human colorectal cancer cell line HCT116. In this study, ramalin displayed concentration-dependent anticancer activity against HCT116 cells, significantly suppressing proliferation and inducing apoptosis. Furthermore, ramalin induced cell cycle arrest in the gap 2/mitosis (G2/M) phase through the modulation of hallmark genes involved in the G2/M phase transition, such as tumour protein p53 (TP53), cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin-dependent kinase 1 (CDK1) and cyclin B1 (CCNB1). At both the transcriptional and translational level, ramalin caused a gradual increase in the expression of TP53 and its downstream gene CDKN1A, while decreasing the expression of CDK1 and CCNB1 in a concentration-dependent manner. In addition, ramalin significantly inhibited the migration and invasion of colorectal cancer cells in a concentration-dependent manner. Taken together, these data suggest that ramalin may be a therapeutic candidate for the targeted therapy of colorectal cancer. Full article
Show Figures

Figure 1

7521 KiB  
Article
Novel Methylselenoesters as Antiproliferative Agents
by Nuria Díaz-Argelich, Ignacio Encío, Daniel Plano, Aristi P. Fernandes, Juan Antonio Palop and Carmen Sanmartín
Molecules 2017, 22(8), 1288; https://doi.org/10.3390/molecules22081288 - 2 Aug 2017
Cited by 16 | Viewed by 6015
Abstract
Selenium (Se) compounds are potential therapeutic agents in cancer. Importantly, the biological effects of Se compounds are exerted by their metabolites, with methylselenol (CH3SeH) being one of the key executors. In this study, we developed a new series of methylselenoesters with [...] Read more.
Selenium (Se) compounds are potential therapeutic agents in cancer. Importantly, the biological effects of Se compounds are exerted by their metabolites, with methylselenol (CH3SeH) being one of the key executors. In this study, we developed a new series of methylselenoesters with different scaffolds aiming to modulate the release of CH3SeH. The fifteen compounds follow Lipinski’s Rule of Five and with exception of compounds 1 and 14, present better drug-likeness values than the positive control methylseleninic acid. The compounds were evaluated to determine their radical scavenging activity. Compound 11 reduced both DPPH and ABTS radicals. The cytotoxicity of the compounds was evaluated in a panel of five cancer cell lines (prostate, colon and lung carcinoma, mammary adenocarcinoma and chronic myelogenous leukemia) and two non-malignant (lung and mammary epithelial) cell lines. Ten compounds had GI50 values below 10 μM at 72 h in four cancer cell lines. Compounds 5 and 15 were chosen for further characterization of their mechanism of action in the mammary adenocarcinoma cell line due to their similarity with methylseleninic acid. Both compounds induced G2/M arrest whereas cell death was partially executed by caspases. The reduction and metabolism were also investigated, and both compounds were shown to be substrates for redox active enzyme thioredoxin reductase. Full article
Show Figures

Graphical abstract

5215 KiB  
Review
Research Progress in the Modification of Quercetin Leading to Anticancer Agents
by Alessandro Massi, Olga Bortolini, Daniele Ragno, Tatiana Bernardi, Gianni Sacchetti, Massimo Tacchini and Carmela De Risi
Molecules 2017, 22(8), 1270; https://doi.org/10.3390/molecules22081270 - 29 Jul 2017
Cited by 181 | Viewed by 12826
Abstract
The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin [...] Read more.
The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin can prevent neurological disorders and exerts protection against mitochondrial damages. Various in vitro studies have assessed the anticancer effects of quercetin, although there are no conclusive data regarding its mode of action. However, low bioavailability, poor aqueous solubility as well as rapid body clearance, fast metabolism and enzymatic degradation hamper the use of quercetin as therapeutic agent, so intense research efforts have been focused on the modification of the quercetin scaffold to obtain analogs with potentially improved properties for clinical applications. This review gives an overview of the developments in the synthesis and anticancer-related activities of quercetin derivatives reported from 2012 to 2016. Full article
Show Figures

Graphical abstract

4703 KiB  
Article
Newly Synthesized Doxorubicin Complexes with Selected Metals—Synthesis, Structure and Anti-Breast Cancer Activity
by Agata Jabłońska-Trypuć, Grzegorz Świderski, Rafał Krętowski and Włodzimierz Lewandowski
Molecules 2017, 22(7), 1106; https://doi.org/10.3390/molecules22071106 - 4 Jul 2017
Cited by 58 | Viewed by 7963
Abstract
Doxorubicin (DOX) is very effective chemotherapeutic agent, however it has several major drawbacks. Therefore the motivation for developing novel drug complexes as anticancer agents with different mechanism of action has arisen. The aim of the present study was to evaluate the influence of [...] Read more.
Doxorubicin (DOX) is very effective chemotherapeutic agent, however it has several major drawbacks. Therefore the motivation for developing novel drug complexes as anticancer agents with different mechanism of action has arisen. The aim of the present study was to evaluate the influence of newly synthesized DOX complexes with selected metals (Mg, Mn, Co, Ni, Fe, Cu, Zn) on apoptosis, cell cycle, viability, proliferation and cytotoxicity in the breast cancer cell line MCF-7. Complexation of DOX with metals has likewise been the subject of our research. The current work showed that the tested bivalent metals at a given pH condition formed metal:DOX complexes in a ratio of 2:1, while iron complexes with DOX in a ratio of 3:1. The studies also showed that selected metal-DOX complexes (Mg-DOX, Mn-DOX, Ni-DOX) at 0.5 µM concentration significantly decreased cell viability and proliferation, however they increased caspase 7 activity. Results also indicated that studied metal-DOX complexes showed high cytotoxicity in MCF-7 cells. Therefore they were chosen for cell cycle check-points and apoptosis/necrosis analysis studied by flow cytometry. Obtained results suggest that doxorubicin complexed by specified metals can be considered as a potential anti-breast cancer agent, which is characterized by a higher efficacy than a parent drug. Full article
Show Figures

Graphical abstract

3608 KiB  
Article
Determination of Structural Requirements of N-Substituted Tetrahydro-β-Carboline Imidazolium Salt Derivatives Using in Silico Approaches for Designing MEK-1 Inhibitors
by Jingwei Liang, Mingyang Wang, Xinyang Li, Xin He, Chong Cao and Fanhao Meng
Molecules 2017, 22(6), 1020; https://doi.org/10.3390/molecules22061020 - 19 Jun 2017
Cited by 6 | Viewed by 5492
Abstract
Novel N-substituted tetrahydro-β-carboline imidazolium salt derivatives proved to have potent antitumor activity in past research. The Topomer CoMFA and CoMSIA function in Sybyl-X 2.0 software was applied for the identification of important features of N-substituted tetrahydro-β-carboline-imidazolium salt derivative moieties. In the [...] Read more.
Novel N-substituted tetrahydro-β-carboline imidazolium salt derivatives proved to have potent antitumor activity in past research. The Topomer CoMFA and CoMSIA function in Sybyl-X 2.0 software was applied for the identification of important features of N-substituted tetrahydro-β-carboline-imidazolium salt derivative moieties. In the case of Topomer CoMFA, all the compounds were split into two fragments which were used to generate a 3D invariant representation, the statistical results of the Topomer CoMFA model: q2 value of 0.700; r2 value of 0.954; with 5 optimum components. The database alignment was utilized for building the CoMSIA model, and the CoMSIA model had q2 and r2 values of 0.615 and 0.897, with 4 optimum components. Target fishing of the PharmMapper platform was utilised for finding potential targets, the human mitogen-activated protein kinase 1 (MEK-1) was found to be the primary potential target for the three compounds with the fit scores of 6.288, 5.741, and 6.721. The molecular docking technique of MOE 2015 was carried out to identify the interactions of amino acids surrounding the ligand, and correlating QASR contour maps were used to identify structural requirements of N-substituted tetrahydro-β-carboline imidazolium salt moieties. Molecular dynamics and simulation studies proved that the target protein was stable for 0.8–5 ns. The pivotal moieties of N-substituted tetrahydro-β-carboline imidazolium salt derivatives and its potential targets were verified by the QASR study, PharmMapper, and the molecular docking study which would be helpful to design novel MEK-1 inhibitors for anticancer drugs. Full article
Show Figures

Figure 1

6893 KiB  
Article
Synthesis and Antiproliferative Activity of Novel All-Trans-Retinoic Acid-Podophyllotoxin Conjugate towards Human Gastric Cancer Cells
by Lei Zhang, Jing Wang, Lai Liu, Chengyue Zheng and Yang Wang
Molecules 2017, 22(4), 628; https://doi.org/10.3390/molecules22040628 - 17 Apr 2017
Cited by 18 | Viewed by 5969
Abstract
With the purpose of creating a multifunctional drug for gastric cancer treatment, a novel all-trans-retinoic acid (ATRA) conjugate with podophyllotoxin (PPT) was designed and synthesized, and its in vitro antiproliferative activity was evaluated against human gastric cancer cell [...] Read more.
With the purpose of creating a multifunctional drug for gastric cancer treatment, a novel all-trans-retinoic acid (ATRA) conjugate with podophyllotoxin (PPT) was designed and synthesized, and its in vitro antiproliferative activity was evaluated against human gastric cancer cell lines using CCK-8 assay. The conjugate, P-A, exhibited significant anticancer activity against MKN-45 and BGC-823 cells with IC50 values of 0.419 ± 0.032 and 0.202 ± 0.055 μM, respectively. Moreover, P-A efficiently triggered cell cycle arrest and induced apoptosis in MKN-45 and BGC-823 cells due to modulation of cell cycle arrest- (CDK1, CDK2, CyclinA and CyclinB1) and apoptosis- (cleaved caspase-3, -8 and -9) related proteins, respectively. Further mechanism studies revealed that P-A could increase the expression levels of RARα and RARβ, and decrease the level of RARγ in MKN-45 and BGC-823 cells. Finally, P-A inhibited the ERK1/2 and AKT signaling in the above two cancer cell lines. More importantly, the underlying mechanisms of P-A were similar to those of precursor PPT but different with the other precursor ATRA. Together, the conjugate P-A was a promising candidate for the potential treatment of human gastric cancer. Full article
Show Figures

Figure 1

2893 KiB  
Article
Design, Synthesis and Evaluation of Naphthalimide Derivatives as Potential Anticancer Agents for Hepatocellular Carcinoma
by Chaochao Ge, Liping Chang, Ying Zhao, Congcong Chang, Xiaojuan Xu, Haoying He, Yuxia Wang, Fujun Dai, Songqiang Xie and Chaojie Wang
Molecules 2017, 22(2), 342; https://doi.org/10.3390/molecules22020342 - 22 Feb 2017
Cited by 22 | Viewed by 6504
Abstract
Two kinds of naphthalimide derivatives were synthesized and evaluated for in vitro their anti-hepatocellular carcinoma properties. Compound 3a with a fused thiazole fragment to naphthalimide skeleton inhibited cell migration of SMMC-7721 and HepG2, and further in vivo trials with two animal models confirmed [...] Read more.
Two kinds of naphthalimide derivatives were synthesized and evaluated for in vitro their anti-hepatocellular carcinoma properties. Compound 3a with a fused thiazole fragment to naphthalimide skeleton inhibited cell migration of SMMC-7721 and HepG2, and further in vivo trials with two animal models confirmed that compound 3a moderately inhibited primary H22 tumor growth (52.6%) and potently interrupted lung metastasis (75.7%) without obvious systemic toxicity at the therapeutic dose. Mechanistic research revealed that compound 3a inhibited cancerous liver cell growth mostly by inducing G2/M phase arrest. Western blotting experiments corroborated that 3a could up-regulate the cell cycle related protein expression of cyclin B1, CDK1 and p21, and inhibit cell migration by elevating the E-cadherin and attenuating integrin α6 expression. Our study showed that compound 3a is a valuable lead compound worthy of further investigation. Full article
Show Figures

Graphical abstract

2016

Jump to: 2023, 2021, 2020, 2019, 2018, 2017, 2015, 2014

2721 KiB  
Article
Targeting Cancer Stem Cells with Novel 4-(4-Substituted phenyl)-5-(3,4,5-trimethoxy/3,4-dimethoxy)-benzoyl-3,4-dihydropyrimidine-2(1H)-one/thiones
by Mashooq Ahmad Bhat, Abdullah Al-Dhfyan and Mohamed A. Al-Omar
Molecules 2016, 21(12), 1746; https://doi.org/10.3390/molecules21121746 - 19 Dec 2016
Cited by 24 | Viewed by 5824
Abstract
Novel 4-(4-substituted phenyl)-5-(3,4,5-trimethoxy/3,4-dimethoxy)-benzoyl-3,4-dihydropyrimidine-2(1H)-one/thione derivatives (DHP 19) were designed, synthesized, characterized and evaluated for antitumor activity against cancer stem cells. The compounds were synthesized in one pot. Enaminones E1 and E2 were reacted with substituted benzaldehydes and urea/thiourea [...] Read more.
Novel 4-(4-substituted phenyl)-5-(3,4,5-trimethoxy/3,4-dimethoxy)-benzoyl-3,4-dihydropyrimidine-2(1H)-one/thione derivatives (DHP 19) were designed, synthesized, characterized and evaluated for antitumor activity against cancer stem cells. The compounds were synthesized in one pot. Enaminones E1 and E2 were reacted with substituted benzaldehydes and urea/thiourea in the presence of glacial acetic acid. The synthesized compounds were characterized by spectral analysis. The compounds were screened in vitro against colon cancer cell line (LOVO) colon cancer stem cells. Most of the compounds were found to be active against side population cancer stem cells with an inhibition of >50% at a 10 μM concentration. Compounds DHP-1, DHP-7 and DHP-9 were found to be inactive. Compound DHP-5 exhibited an in vitro anti-proliferative effect and arrested cancer cells at the Gap 2 phase (G2) checkpoint and demonstrated an inhibitory effect on tumor growth for a LOVO xenograft in a nude mouse experiment. Full article
Show Figures

Graphical abstract

725 KiB  
Review
The HK2 Dependent “Warburg Effect” and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate
by Paweł Lis, Mariusz Dyląg, Katarzyna Niedźwiecka, Young H. Ko, Peter L. Pedersen, Andre Goffeau and Stanisław Ułaszewski
Molecules 2016, 21(12), 1730; https://doi.org/10.3390/molecules21121730 - 15 Dec 2016
Cited by 160 | Viewed by 21784
Abstract
This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the “Warburg” and “Crabtree” effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2), a major player in both the [...] Read more.
This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the “Warburg” and “Crabtree” effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2), a major player in both the “Warburg effect” and cancer cell immortalization. The second discovery relates to the finding that cancer cells, unlike normal cells, derive as much as 60% of their ATP from glycolysis via the “Warburg effect”, and the remaining 40% is derived from mitochondrial oxidative phosphorylation. Also described are selected anticancer agents which generally act as strong energy blockers inside cancer cells. Among them, much attention has focused on 3-bromopyruvate (3BP). This small alkylating compound targets both the “Warburg effect”, i.e., elevated glycolysis even in the presence oxygen, as well as mitochondrial oxidative phosphorylation in cancer cells. Normal cells remain unharmed. 3BP rapidly kills cancer cells growing in tissue culture, eradicates tumors in animals, and prevents metastasis. In addition, properly formulated 3BP shows promise also as an effective anti-liver cancer agent in humans and is effective also toward cancers known as “multiple myeloma”. Finally, 3BP has been shown to significantly extend the life of a human patient for which no other options were available. Thus, it can be stated that 3BP is a very promising new anti-cancer agent in the process of undergoing clinical development. Full article
Show Figures

Figure 1

2812 KiB  
Article
Design, Synthesis and Biological Evaluation of Novel Primaquine-Cinnamic Acid Conjugates of the Amide and Acylsemicarbazide Type
by Kristina Pavić, Ivana Perković, Petra Gilja, Filip Kozlina, Katja Ester, Marijeta Kralj, Dominique Schols, Dimitra Hadjipavlou-Litina, Eleni Pontiki and Branka Zorc
Molecules 2016, 21(12), 1629; https://doi.org/10.3390/molecules21121629 - 28 Nov 2016
Cited by 24 | Viewed by 8317
Abstract
In this paper design and synthesis of a scaffold comprising primaquine (PQ) motif and cinnamic acid derivatives (CADs) bound directly (compounds 3ak) or via a spacer (compounds 7ak) are reported. In the first series of compounds, PQ [...] Read more.
In this paper design and synthesis of a scaffold comprising primaquine (PQ) motif and cinnamic acid derivatives (CADs) bound directly (compounds 3ak) or via a spacer (compounds 7ak) are reported. In the first series of compounds, PQ and various CADs were connected by amide bonds and in the second series by acylsemicarbazide functional groups built from the PQ amino group, CONHNH spacer and the carbonyl group originating from the CADs. PQ-CAD amides 3ak were prepared by a simple one-step condensation reaction of PQ with a series of CAD chlorides (method A) or benzotriazolides 2 (method B). The synthesis of acylsemicarbazides 7ak included activation of PQ with benzotriazole, preparation of PQ-semicarbazide 6 and its condensation with CAD chlorides 4. All synthesized PQ-CAD conjugates were evaluated for their anticancer, antiviral and antioxidative activities. Almost all compounds from series 3 were selective towards the MCF-7 cell line and active at micromolar concentrations. The o-fluoro derivative 3h showed high activity against HeLa, MCF-7 and in particular against the SW 620 cell line, while acylsemicarbazide 7f with a benzodioxole ring and 7c, 7g and especially 7j with methoxy-, chloro- or trifluoromethyl-substituents in the para position showed high selectivity and high inhibitory activity against MCF-7 cell line at micromolar (7c, 7f, 7g) and nanomolar (7j) levels. Acylsemicarbazide derivatives with trifluoromethyl group(s) 7i, 7j and 7k showed specific activity against human coronavirus (229E) at concentrations which did not alter the normal cell morphology. The same compounds exerted the most potent reducing activity in the DPPH test, together with 7d and 7g, while methoxy (compounds 7ce), benzodioxole (7f), p-Cl (7g) and m-CF3 (7i) acylsemicarbazides and amide 3f presented the highest LP inhibition (83%–89%). The dimethoxy derivative 7d was the most potent LOX inhibitor (IC50 = 10 μΜ). The performed biological tests gave evidence of acylsemicarbazide functional group as superior binding group in PQ-CAD conjugates. Full article
Show Figures

Scheme 1

1769 KiB  
Article
Transdermal Permeation and Anti-Inflammation Activities of Novel Sinomenine Derivatives
by Zi-Jian Zhao, Chang Zhao, Jing Xiao and Jian-Cheng Wang
Molecules 2016, 21(11), 1520; https://doi.org/10.3390/molecules21111520 - 17 Nov 2016
Cited by 14 | Viewed by 4835
Abstract
Sinomenine is extracted from Sinomenii caulis (a traditional Chinese medicine), and it is used as the active ingredient in rheumatic arthritis treatments. It has been used in clinical applications for decades. However, there are some disadvantages, including low activity in transdermal permeation and [...] Read more.
Sinomenine is extracted from Sinomenii caulis (a traditional Chinese medicine), and it is used as the active ingredient in rheumatic arthritis treatments. It has been used in clinical applications for decades. However, there are some disadvantages, including low activity in transdermal permeation and a high dosage being clinically required. To overcome these defects, sinomenine was used as a primer, and structural modification was performed. In our study, eight new compounds were screened out by transdermal permeation in vitro and anti-inflammatory response in vitro and in vivo. Compound 1a exhibited the most potent transdermal permeation and anti-inflammatory activity. Based on these results, further development of this compound may be warranted. Full article
Show Figures

Figure 1

3844 KiB  
Review
Mitoxantrone-Surfactant Interactions: A Physicochemical Overview
by Mirela Enache, Ana Maria Toader and Madalin Iancu Enache
Molecules 2016, 21(10), 1356; https://doi.org/10.3390/molecules21101356 - 13 Oct 2016
Cited by 43 | Viewed by 8455
Abstract
Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell [...] Read more.
Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell membrane is the first barrier encountered by anticancer drugs before reaching the DNA sites inside the cells and as surfactant micelles are known as simple model systems for biological membranes, the drugs-surfactant interaction has been the subject of great research interest. Further, quantitative understanding of the interactions of drugs with biomimicking structures like surfactant micelles may provide helpful information for the control of physicochemical properties and bioactivities of encapsulated drugs in order to design better delivery systems with possible biomedical applications. The present review describes the physicochemical aspects of the interactions between the anticancer drug mitoxantrone and different surfactants. Mitoxantrone-micelle binding constants, partitions coefficient of the drug between aqueous and micellar phases and the corresponding Gibbs free energy for the above processes, and the probable location of drug molecules in the micelles are discussed. Full article
Show Figures

Figure 1

2657 KiB  
Article
Modulation of Autophagy by a Thioxanthone Decreases the Viability of Melanoma Cells
by Raquel T. Lima, Diana Sousa, Ana M. Paiva, Andreia Palmeira, João Barbosa, Madalena Pedro, Madalena M. Pinto, Emília Sousa and M. Helena Vasconcelos
Molecules 2016, 21(10), 1343; https://doi.org/10.3390/molecules21101343 - 10 Oct 2016
Cited by 33 | Viewed by 6199
Abstract
(1) Background: Our previous studies unveiled the hit thioxanthone TXA1 as an inhibitor of P-glycoprotein (drug efflux pump) and of human tumor cells growth, namely of melanoma cells. Since TXA1 is structurally similar to lucanthone (an autophagy inhibitor and apoptosis inducer) and to [...] Read more.
(1) Background: Our previous studies unveiled the hit thioxanthone TXA1 as an inhibitor of P-glycoprotein (drug efflux pump) and of human tumor cells growth, namely of melanoma cells. Since TXA1 is structurally similar to lucanthone (an autophagy inhibitor and apoptosis inducer) and to N10-substituted phenoxazines (isosteres of thioxanthones, and autophagy inducers), this study aimed at further assessing its cytotoxic mechanism and evaluating its potential as an autophagy modulator in A375-C5 melanoma cells; (2) Methods: Flow cytometry with propidium iodide (PI) for cell cycle profile analysis; Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry with Annexin V/PI labeling and Western blot for apoptosis analysis were conducted. A pharmacophore approach was used for mapping TXA1 onto pharmacophores for autophagy induction. Autophagy analyses included transmission electron microscopy for visualization of autophagic structures, fluorescence microscopy for observation of monodansylcadaverine (MDC) staining, pattern of LC3 expression in the cells and acridine orange staining, and Western blot for autophagic proteins expression; (3) Results: TXA1 induced autophagy of melanoma cells at the GI50 concentration (3.6 μM) and apoptosis at twice that concentration. Following treatment with TXA1, autophagic structures were observed, together with the accumulation of autophagosomes and the formation of autophagolysosomes. An increase in LC3-II levels was also observed, which was reverted by 3-methyladenine (3-MA) (an early stage autophagy-inhibitor) but further increased by E-64d/pepstatin (late-stage autophagy inhibitors). Finally, 3-MA also reverted the effect of TXA1 in cellular viability; (4) Conclusion: TXA1 decreases the viability of melanoma cells by modulation of autophagy and may, therefore, serve as a lead compound for the development of autophagy modulators with antitumor activity. Full article
Show Figures

Figure 1

2922 KiB  
Article
Anti-Cancer Effect of Quercetin in Xenograft Models with EBV-Associated Human Gastric Carcinoma
by Hwan Hee Lee, Seulki Lee, Yu Su Shin, Miyeon Cho, Hyojeung Kang and Hyosun Cho
Molecules 2016, 21(10), 1286; https://doi.org/10.3390/molecules21101286 - 26 Sep 2016
Cited by 36 | Viewed by 8474
Abstract
Licorice extracts have been widely used in herbal and folk medications. Glycyrrhiza contains diverse range of biological compounds including triterpenes (glycyrrhizin, glycyrrhizic acid) and flavonoids (quercetin, liquiritin, liquiritigenin, glabridin, licoricidin, isoliquiritigenin). The flavonoids in licorice are known to have strong anti-cancer activities. Quercetin, [...] Read more.
Licorice extracts have been widely used in herbal and folk medications. Glycyrrhiza contains diverse range of biological compounds including triterpenes (glycyrrhizin, glycyrrhizic acid) and flavonoids (quercetin, liquiritin, liquiritigenin, glabridin, licoricidin, isoliquiritigenin). The flavonoids in licorice are known to have strong anti-cancer activities. Quercetin, the most abundant flavonoid, has been shown to have anti-ulcer, anti-cancer, antioxidant, and anti-inflammatory properties. Latent Epstein-Barr virus (EBV) infection can lead to serious malignancies, such as, Burkitt’s lymphoma, Hodgkin’s disease and gastric carcinoma(GC), and (Epstein-Barr virus associated gastric carcinoma) EBVaGC is one of the most common EBV-associated cancers. In this study, the authors first examined the anti-cancer effects of quercetin and isoliquiritigenin in vivo xenograft animal models implanted with EBV(+) human gastric carcinoma (SNU719) or EBV(−) human gastric carcinoma (MKN74), and then explored the molecular mechanisms responsible for their anti-cancer activities. The results obtained showed that anti-cancer effect of quercetin was greater than isoliquiritigenin in mice injected with EBV(+) human gastric carcinoma (SNU719) cells. On the other hand, quercetin and isoliquiritigenin had similar anti-cancer effects in mice injected with EBV(−) human gastric carcinoma (MKN74) cells. Interestingly, quercetin inhibited EBV viral protein expressions, including EBNA-1 and LMP-2 proteins in tumor tissues from mice injected with EBV(+) human gastric carcinoma. Quercetin more effectively induced p53-dependent apoptosis than isoliquiritigenin in EBV(+) human gastric carcinoma, and this induction was correlated with increased expressions of the cleaved forms of caspase-3, -9, and Parp. In EBV(−)human gastric carcinoma (MKN74), both quercetin and isoliquiritigenin induced the expressions of p53, Bax, and Puma and the cleaved forms of caspase-3 and -9 and Parp at similar levels. Full article
Show Figures

Figure 1