E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Saponins"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 May 2019

Special Issue Editor

Guest Editor
Dr. David Popovich

Massey University, Massey Institute of Food Science and Technology, Palmerston North, New Zealand
Website | E-Mail
Interests: phytochemicals; traditional plant based medicine; ginseng; soy; bioactive plants

Special Issue Information

Dear Colleagues,

Saponins are a diverse group of molecules that are present in a wide variety of plants, some of which are used in traditional medicines. This Special Issue aims to attract contributions on all aspects of the chemistry and bioactivity (cells, antimicrobial, and antiviral) of saponin containing food and traditional medicines.

Dr. David Popovich
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Triterpenoids
  • Ginseng
  • Soy
  • Traditional medicine
  • Bioactivity

Published Papers (3 papers)

View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Gypenoside LXXV Promotes Cutaneous Wound Healing In Vivo by Enhancing Connective Tissue Growth Factor Levels Via the Glucocorticoid Receptor Pathway
Molecules 2019, 24(8), 1595; https://doi.org/10.3390/molecules24081595
Received: 8 April 2019 / Revised: 18 April 2019 / Accepted: 22 April 2019 / Published: 23 April 2019
PDF Full-text (2534 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cutaneous wound healing is a well-orchestrated event in which many types of cells and growth factors are involved in restoring the barrier function of skin. In order to identify whether ginsenosides, the main active components of Panax ginseng, promote wound healing, the [...] Read more.
Cutaneous wound healing is a well-orchestrated event in which many types of cells and growth factors are involved in restoring the barrier function of skin. In order to identify whether ginsenosides, the main active components of Panax ginseng, promote wound healing, the proliferation and migration activities of 15 different ginsenosides were tested by MTT assay and scratched wound closure assay. Among ginsenosides, gypenoside LXXV (G75) showed the most potent wound healing effects. Thus, this study aimed to investigate the effects of G75 on wound healing in vivo and characterize associated molecular changes. G75 significantly increased proliferation and migration of keratinocytes and fibroblasts, and promoted wound closure in an excision wound mouse model compared with madecassoside (MA), which has been used to treat wounds. Additionally, RNA sequencing data revealed G75-mediated significant upregulation of connective tissue growth factor (CTGF), which is known to be produced via the glucocorticoid receptor (GR) pathway. Consistently, the increase in production of CTGF was confirmed by western blot and ELISA. In addition, GR-competitive binding assay and GR translocation assay results demonstrated that G75 can be bound to GR and translocated into the nucleus. These results demonstrated that G75 is a newly identified effective component in wound healing. Full article
(This article belongs to the Special Issue Saponins)
Figures

Figure 1

Open AccessArticle
Oleiferasaponin A2, a Novel Saponin from Camellia oleifera Abel. Seeds, Inhibits Lipid Accumulation of HepG2 Cells Through Regulating Fatty Acid Metabolism
Molecules 2018, 23(12), 3296; https://doi.org/10.3390/molecules23123296
Received: 19 November 2018 / Revised: 5 December 2018 / Accepted: 10 December 2018 / Published: 12 December 2018
PDF Full-text (1410 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A new triterpenoid saponin, named oleiferasaponin A2, was isolated and identified from Camellia oleifera defatted seeds. Oleiferasaponin A2 exhibited anti-hyperlipidemic activity on HepG2 cell lines. Further study of the hypolipidemic mechanism showed that oleiferasaponin A2 inhibited fatty acid synthesis [...] Read more.
A new triterpenoid saponin, named oleiferasaponin A2, was isolated and identified from Camellia oleifera defatted seeds. Oleiferasaponin A2 exhibited anti-hyperlipidemic activity on HepG2 cell lines. Further study of the hypolipidemic mechanism showed that oleiferasaponin A2 inhibited fatty acid synthesis by significantly down-regulating the expression of SREBP-1c, FAS and FAS protein, while dramatically promoting fatty acid β-oxidation by up-regulating the expression of ACOX-1, CPT-1 and ACOX-1 protein. Our results demonstrate that the oleiferasaponin A2 possesses potential medicinal value for hyperlipidemia treatment. Full article
(This article belongs to the Special Issue Saponins)
Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview
Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects
Molecules 2019, 24(10), 1856; https://doi.org/10.3390/molecules24101856
Received: 4 May 2019 / Revised: 12 May 2019 / Accepted: 13 May 2019 / Published: 14 May 2019
PDF Full-text (1428 KB) | HTML Full-text | XML Full-text
Abstract
Black ginseng is a type of processed ginseng that is prepared from white or red ginseng by steaming and drying several times. This process causes extensive changes in types and amounts of secondary metabolites. The chief secondary metabolites in ginseng are ginsenosides (dammarane-type [...] Read more.
Black ginseng is a type of processed ginseng that is prepared from white or red ginseng by steaming and drying several times. This process causes extensive changes in types and amounts of secondary metabolites. The chief secondary metabolites in ginseng are ginsenosides (dammarane-type triterpene saponins), which transform into less polar ginsenosides in black ginseng by steaming. In addition, apparent changes happen to other secondary metabolites such as the increase in the contents of phenolic compounds, reducing sugars and acidic polysaccharides in addition to the decrease in concentrations of free amino acids and total polysaccharides. Furthermore, the presence of some Maillard reaction products like maltol was also engaged. These obvious chemical changes were associated with a noticeable superiority for black ginseng over white and red ginseng in most of the comparative biological studies. This review article is an attempt to illustrate different methods of preparation of black ginseng, major chemical changes of saponins and other constituents after steaming as well as the reported biological activities of black ginseng, its major saponins and other metabolites. Full article
(This article belongs to the Special Issue Saponins)
Figures

Figure 1

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top