Rapid characterization of triterpene saponins from Zornia brasiliensis by HPLC-ESI-MS/MS

Yuri Mangueira Nascimento ¹, Lucas Silva Abreu ¹, Ramon Leal Lima ¹, Vicente Carlos O. Costa ¹, José Iranildo Miranda de Melo ², Raimundo Braz-Filho ³, Marcelo Sobral Silva ¹, and Josean Fechine Tavares ^{1,*}

- ¹ Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil; yurimangueira@ltf.ufpb.br; lucas.abreu@ltf.ufpb.br; ramonlima.fr@hotmail.com
- ² Graduate Program in Ecology and Conservation, Department of Biology, Center for Biological and Health Sciences, 58429-500, Campina Grande, Paraíba, Brazil; tournefort@gmail.com
- ³ Center of Sciences and Technologies, Darcy Ribeiro Norte Fluminense State University, 28013-600 Campos dos Goytacazes, Rio de Janeiro, Rio de Janeiro, Brazil; braz@uenf.br
- * Correspondence: josean@ltf.ufpb.br; Tel.: +55-83-3216-7427.

	Table of contents	Page		
Table 1.	Comparative ¹³ C and ¹ H NMR data of 25 in DMSO- d_6 (100 and 500 MHz) of the sapogenin of Soyasaponin II			
Table 2.	Comparative ¹³ C and ¹ H NMR data of 25 in DMSO- d_6 (100 and 500 MHz) of the sugars of Soyasaponin II	4		
Figure S1.	¹ H-NMR (500 MHz, DMSO- d_6) spectrum of compound 25	5		
Figure S2.	¹³ C-NMR (100 MHz, DMSO- d_6) spectrum of compound 25	5		
Figure S3.	HSQC (500 x 125 MHz, DMSO- d_6) spectrum of compound 25	6		
Figure S4.	HMBC (500 x 125 MHz, DMSO- d_6) spectrum of compound 25	6		
Figure S5.	Expansion of HMBC (500 x 125 MHz, DMSO- <i>d</i> ₆) spectrum of compound 25			
Figure S6.	Expansion of HMBC (500 x 125 MHz, DMSO- d_6) spectrum of compound 25	7		
Figure S7.	The HRESI-TOF-MS spectrum of compound 25	8		
Figure S8.	The ESI-MS/MS spectrum of compound 25	8		
Figure S9.	The ESI-MS/MS spectrum of compounds 1 and 2	9		
Figure S10.	The ESI-MS/MS spectrum of compounds 3 and 4	10		
Figure S11.	The ESI-MS/MS spectrum of compounds 5, 7, 8 and 14	11		
Figure S12.	The ESI-MS/MS spectrum of compounds 9 and 10	12		

Supporting Information

Figure S13.	The ESI-MS/MS spectrum of compounds 11, 12, 13 and 15	13
Figure S14.	The ESI-MS/MS spectrum of compounds 16, 18, 19 and 22	14
Figure S15.	The ESI-MS/MS spectrum of compound 20	15
Figure S16.	The ESI-MS/MS spectrum of compounds 21, 31, 32, 33 and 35	16
Figure S17.	The ESI-MS/MS spectrum of compounds 24, 26, and 29	17
Figure S18.	The ESI-MS/MS spectrum of compounds 27, 28, 30 and 34	18
Figure S19.	Fragmentation pathway of compounds 28 (m/z 779.4562), 30 (m/z 895.5043) and 34 (m/z 749.4485) having olean-12-ene-3 β ,diol (m/z 441 or 439) as aglycone in negative mode ESI-MS/MS	19
Figure S20.	Fragmentation pathway of compounds 21 (m/z 939.4935), 31 (m/z 793.4348), 32 (m/z 909.4843), 33 (m/z 763.4286) and 35 (m/z 631.3856), which have soyasapogenol E (m/z 455) as aglycone, in negative mode ESI-MS/MS	19
Figure S21	Fragmentation pathway of compounds 23 (m/z 941.5123), 24 (m/z 795.4520), 25 (m/z 911.5006), 26 (m/z 765.4418) and 29 (m/z 633.3998), which possess soyasapogenol B (m/z 457) as aglycone, in negative mode ESI-MS/MS	20
Figure S22.	Fragmentation pathway of compounds 5 (m/z 957.5056), 8 (m/z 811.4459), 6 (m/z 927.4943), 7 (m/z 781.4350) and 14 (m/z 649.3933), which have soyasapogenol A (m/z 473) as aglycone, in negative mode ESI-MS/MS	20
Figure S23	Fragmentation pathway of compounds 16 (m/z 999.5135), 18 (m/z 853.4559), 17 (m/z 969.5074), 19 (m/z 823.4463) and 22 (m/z 691.4042), which have 21-acetoxy-soyasapogenol A (m/z 515) as aglycone, in negative mode ESI-MS/MS	21
Figure S24.	Fragmentation pathway of compounds 11 (m/z 997.5022), 12 (m/z 851.4412), 13 (m/z 967.4901) and 15 (m/z 821.4303), which have aglycone I (m/z 513) as aglycone, in negative mode ESI-MS/MS	21
Figure S25.	Fragmentation pathway of compounds 1 (m/z 925.4800) and 2 (m/z 779.4239), which have wistariasapogenol A (m/z 471) as aglycone, in negative mode ESI-MS/MS	22
Figure S26.	Fragmentation pathway of compounds 3 (m/z 797.4310) and 4 (m/z 943.4912), which have kudzusapogenol A (m/z 485) as aglycone, in negative mode ESI-MS/MS	22
Figure S27.	Fragmentation pathway of compounds 9 (m/z 985.4961) and 10 (m/z 839.4404) having aglycone II (m/z 531) and that of compound 20 (m/z 837.4603), which has 22- <i>O</i> -acetate-soyasapogenol B (m/z 499) as aglycone in negative mode ESI-MS/MS	23

HSQC		НМВС		
С	δ_{C}	δ_{H}	$^{2}J_{\mathrm{CH}}$	$^{3}J_{\rm CH}$
4	43.3	-	-	-
8	41.8	-	-	-
10	36.0	-	-	-
13	144.3	-	-	-
14	43.3	-	-	-
17	37.0	-	-	-
20	30.3	-	-	-
СН				
3	90.0	3.12 (m)	-	-
5	55.5	nd	-	-
9	46.9	1.47 (m)	C-8/C-10/ C-11	C-1/Me-25/ Me-26
12	121.7	5.16 (sl)	-	C-9/C-18
18	44.7	nd	-	-
22	74.2	3.23 (sl)	-	-
CH_2				
1	38.4	1.52 (m); 0.89 (m)	C-10	C-9
2	25.4	1.65 (d, J = 9.5 Hz); 0.92 (m)	-	-
6	18.1	1.52 (m); 1.30 (m)	C-7	C-10
7	32.7	1.44 (m); 1.28 (m)	C-8	Me-26
11	23.3	1.28 (m)	-	-
15	25.6	1.99 (m); 0.91 (m)	-	-
16	28.0	1.33 (m); 0.95 (m)	C-17	C-22
19	46.1	1.67 (m); 0.88 (m)	C-18	Me29/ Me-30
21	41.2	1.30 (m)	C-20/C-22	C-17/C-30
24	61.6	3.80 (d, J = 11 Hz); 3.04 (m)	-	C-3/C-23
CH ₃				
23	22.3	1.08 (s)	C-4	C-3/C-5/ C-24
25	15.3	0.79 (s)	C-10	C-1/C-5
26	16.7	0.88 (s)	C-8	C-7
27	25.0	1.04 (s)	-	C-8
28	20.4	0.74 (s)	C-17	C16/C18/C-22
29	32.7	0.96 (s)	C-20	C-19/C-21
30	28.4	0.96 (s)	C-20	C-19/C-21

Table 1. Date of ¹³C and ¹H NMR data of **25** in DMSO- d_6 (100 and 500 MHz) of the sapogenin of Soyasaponin II [30].

HSQC		HMBC		
С	$\delta_{\rm C}$	δ_{H}	$^{2}J_{\mathrm{CH}}$	${}^{3}J_{ m CH}$
1'	103.9	4.13 (d, <i>J</i> = 6.0 Hz)	-	C-3
2'	77.2	3.33 (m)	C-1'	C-1"
3'	77.1	3.30 (m)	-	-
4'	73.8	3.17 (m)	-	-
5'	76.4	3.12 (m)	-	-
6'	172.8	-		-
1"	100.7	4.68 (d, <i>J</i> = 7.0 Hz)	-	-
2"	77.6	3.16 (m)	-	C-1""
3"	70.7	3.49 (m)	-	-
4"	69.5	3.23 (m)	-	
5"	65.4	3.60 (dd, $J = 4.5$ and 11.0 Hz) e 2.92 (t. $J = 11.0$ Hz)	-	-
1'''	100.3	4.97 (sl)	C-2""	C-2"'/C-5"'
2'''	70.7	3.65 (sl)	-	-
3'''	72.5	3.05 (m)	-	-
4'''	72.6	3.13 (m)	-	-
5'''	68.1	3.51(m)	-	-
6'''	17.9	1.06 (d)	C-5""	C-4""

Table 2. Date of ¹³C and ¹H NMR data of **25** in DMSO- d_6 (100 and 500 MHz) of the sugars of Soyasaponin II [30].

Figure S1. ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of compound **25**.

Figure S2. ¹³C-NMR (100 MHz, DMSO- d_6) spectrum of compound 25.

Figure S3. HSQC (500 x 125 MHz, DMSO-*d*₆) spectrum of compound 25.

Figure S4. HMBC (500 x 125 MHz, DMSO-*d*₆) spectrum of compound 25

Figure S5. Expansion of HMBC (500 x 125 MHz, DMSO-*d*₆) spectrum of compound 25.

Figure S6. Expansion of HMBC (500 x 125 MHz, DMSO-d₆) spectrum of compound 25.

Figure S7. The HRESI-TOF-MS spectrum of compound 25.

Figure S8. The ESI-MS/MS spectrum of compound 25.

Figure S9. The ESI-MS/MS spectrum of compounds 1 and 2.

Figure S10. The ESI-MS/MS spectrum of compounds 3 and 4.

Figure S11. The ESI-MS/MS spectrum of compounds 5, 6, 7, 8 and 14.

Figure S12. The ESI-MS/MS spectrum of compounds 9 and 10.

Figure S13. The ESI-MS/MS spectrum of compounds 11, 12, 13 and 15.

Figure S14. The ESI-MS/MS spectrum of compounds 16, 17, 18, 19 and 22.

Figure S15. The ESI-MS/MS spectrum of compound 20.

Figure S16. The ESI-MS/MS spectrum of compounds 21, 31, 32, 33 and 35.

Figure S17. The ESI-MS/MS spectrum of compounds 22, 24, 25, 26, and 29.

Figure S18. The ESI-MS/MS spectrum of compounds 27, 28, 30 and 34.

Figure S19. Fragmentation pathway of compounds **28** (*m/z* 779.4562), **30** (*m/z* 895.5043) and **34** (*m/z* 749.4485) having olean-12-ene-3 β ,diol (*m/z* 441 or 439) as aglycone in negative mode ESI-MS/MS.

Figure S20. Fragmentation pathway of compounds **21** (m/z 939.4935), **31** (m/z 793.4348), **32** (m/z 909.4843), **33** (m/z 763.4286) and **35** (m/z 631.3856), which have soyasapogenol E (m/z 455) as aglycone, in negative mode ESI-MS/MS.

Figure S21. Fragmentation pathway of compounds **23** (m/z 941.5123), **24** (m/z 795.4520), **25** (m/z 911.5006), **26** (m/z 765.4418) and **29** (m/z 633.3998), which possess soyasapogenol B (m/z 457) as aglycone, in negative mode ESI-MS/MS.

Figure S22. Fragmentation pathway of compounds **5** (m/z 957.5056), **8** (m/z 811.4459), **6** (m/z 927.4943), **7** (m/z 781.4350) and **14** (m/z 649.3933), which have soyasapogenol A (m/z 473) as aglycone, in negative mode ESI-MS/MS.

Figure S23 Fragmentation pathway of compounds **16** (m/z 999.5135), **18** (m/z 853.4559), **17** (m/z 969.5074), **19** (m/z 823.4463) and **22** (m/z 691.4042), which have Aglycone I (m/z 515) as aglycone, in negative mode ESI-MS/MS.

Figure S24. Fragmentation pathway of compounds **11** (m/z 997.5022), **12** (m/z 851.4412), **13** (m/z 967.4901) and **15** (m/z 821.4303), which have Aglycone II (m/z 513) as aglycone, in negative mode ESI-MS/MS.

Figure S25. Fragmentation pathway of compounds 1 (m/z 925.4800) and 2 (m/z 779.4239), which have wistariasapogenol A (m/z 471) as aglycone, in negative mode ESI-MS/MS.

Figure S26. Fragmentation pathway of compounds **3** (m/z 797.4310) and **4** (m/z 943.4912), which have kudzusapogenol A (m/z 485) as aglycone, in negative mode ESI-MS/MS.

Figure S27. Fragmentation pathway of compounds 9 (m/z 985.4961) and 10 (m/z 839.4404) having Aglycone III (m/z 531) and that of compound 20 (m/z 837.4603), which has 22-*O*-acetate-soyasapogenol B (m/z 499) as aglycone, in negative mode ESI-MS/MS.