Welding and Joining of Advanced High-Strength Steels (2nd Edition)

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Welding and Joining".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 6165

Special Issue Editor


E-Mail Website
Guest Editor
Materials Science and Engineering Program, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
Interests: Advanced microstructural characterization (XRD, SEM, TEM, nanoindentation); welding metallurgy; welding of ferrous and non-ferrous metals; mechanical properties and formability of AHSS; welding processes (RSW, FSW, arc and laser); hardfacing and coating technology; wear
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nowadays advanced high strength steels (AHSS) are being predominantly employed by the automotive industry. Among the main advantages, AHSS provide improved fuel efficiency (due to weight reduction by downgauging), and accomplish passenger safety requirements (enhanced crashworthiness behavior), without compromising the overall properties. The AHSS family (Dual Phase, DP; Complex-Phase, CP; Ferritic-Bainitic, FB; Martensitic, MS; Transformation-Induced Plasticity, TRIP; Hot-Formed, HF; Twinning-Induced Plasticity, TWIP; boron-based Press Hardened Steels, PHS; and Quenching & Partitioning, Q&P), possess sophisticated and unique multiphase microstructures that provides them with extraordinary strength, ductility, toughness, fatigue, and/or a combination of such properties.

Welding and joining of AHSS is challenging; in particular, when choosing the adequate technique according to established requirements e.g., portability, cost, heat input, welding speed, joint and design restrictions, etc. There is an ample number of available technologies utilized for joining AHSS such as resistance spot welding (RSW), laser welding, friction stir spot welding (FSSW), arc welding processes (GMAW, TIG, Plasma), arc stud welding, high frequency induction welding (HFIW), magnetic pulse welding (MPW), brazing procedures (GMA, plasma, laser), adhesive bonding, hybrid welding, mechanical joining, etc.

This Special Issue on welding and joining of AHSS aims to cover various topics of interest (but not limited): microstructure-property relationships, welding metallurgy (weld pool solidification, phase transformations, etc.), performance and properties (strength, impact, fatigue), dissimilar metal joining (i.e., AHSS-others), forming and manufacturing of tailored welded blanks, weldability of AHSS, progress in related welding processes, welding and joining process simulation, neural network applications, industrial applications, weld inspection and repair.

In this Special Issue, you are invited to submit original research articles and reviews.

I look forward to receiving your contributions.

Prof. Dr. Víctor H. Baltazar-Hernández
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Advanced High Strength Steels (AHSS)
  • welding and joining of AHSS
  • microstructure-property relationship of welded AHSS
  • welding manufacturing of AHSS
  • applications and performance of welded AHSS

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 5879 KiB  
Article
Effect of Post-Weld Heat Treatment Cooling Strategies on Microstructure and Mechanical Properties of 0.3 C-Cr-Mo-V Steel Weld Joints Using GTAW Process
by Syed Quadir Moinuddin, Mohammad Faseeulla Khan, Khaled Alnamasi, Skander Jribi, K. Radhakrishnan, Syed Shaul Hameed, V. Muralidharan and Muralimohan Cheepu
Metals 2025, 15(5), 496; https://doi.org/10.3390/met15050496 - 29 Apr 2025
Abstract
A total of 0.3%C-Cr-Mo-V steel, a high-strength alloy steel widely used in rocket motor housings, suspension systems in high-performance vehicles, etc., is noted due to its high strength-to-weight ratio. However, its high carbon equivalent (CE > 1%) makes it challenging to weld, as [...] Read more.
A total of 0.3%C-Cr-Mo-V steel, a high-strength alloy steel widely used in rocket motor housings, suspension systems in high-performance vehicles, etc., is noted due to its high strength-to-weight ratio. However, its high carbon equivalent (CE > 1%) makes it challenging to weld, as it is prone to brittle martensitic formation, which increases the risk of cracking and embrittlement. The present paper focuses on enhancing the microstructure and mechanical properties of 0.3% C-Cr-Mo-V steel by gas tungsten arc welded (GTAW) joints, utilizing post-weld heat treatment and cooling strategies (PWHTCS). A systematic experimental approach was employed to ensure a defect-free weld through dye penetrant testing (DPT) and X-ray radiography techniques. Subsequently, test specimens were extracted from the welded sections and subjected to PWHT protocols, including hardening, tempering, and rapid quenching using air and oil cooling (AC and OC, respectively) mediums. Results show that OC has enhanced tensile strength and hardness while simultaneously maintaining and improving ductility, ensuring a well-balanced combination of strength and toughness. Fractography analysis revealed ductile fracture in AC samples, whereas OC weldments exhibited a mixed ductile–brittle fracture mode. Thus, the findings demonstrate the critical role of PWHTCS, with OC, as an effective method for achieving enhanced mechanical performance and microstructural stability in high-integrity applications. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

16 pages, 5953 KiB  
Article
Microstructural and Electrochemical Analysis of the Physically Simulated Heat-Affected Zone of Super-Duplex Stainless Steel UNS S32750
by Francisco Magalhães dos Santos, Jr., Leonardo Oliveira Passos da Silva, Ygor Tadeu Bispo dos Santos, Bruna Callegari, Tiago Nunes Lima and Rodrigo Santiago Coelho
Metals 2025, 15(1), 2; https://doi.org/10.3390/met15010002 - 24 Dec 2024
Viewed by 824
Abstract
Super-duplex stainless steels (SDSSs) were introduced in the oil and gas industry due to their high resistance to pitting corrosion, promoted by the high content of alloying elements. The welding process can cause an unbalanced ferrite/austenite microstructure and, consequently, the possibility of deleterious [...] Read more.
Super-duplex stainless steels (SDSSs) were introduced in the oil and gas industry due to their high resistance to pitting corrosion, promoted by the high content of alloying elements. The welding process can cause an unbalanced ferrite/austenite microstructure and, consequently, the possibility of deleterious phases, increasing the risk of failure. The aim of this work is to investigate the behavior of the heat-affected zone (HAZ) of SDSS UNS S32750 steel produced with different thermal inputs simulated in a Gleeble® welding simulator and correlate these findings with its corrosion properties. The pitting resistance was investigated by electrochemical techniques in sodium chloride solution, and the critical pitting temperature (CPT) was calculated for each evaluated microstructure. The material as received presents 46.19 vol% ferrite and a high corrosion resistance, with a CPT of 71.54 °C. HAZ-simulated cycles resulted in similar ferrite percentages, between 54.09 vol% and 57.25 vol%. A relationship was found between heat input, ferrite content, and CPT: increasing the heat input results in greater ferrite content and lowers the CPT, which may favor the pitting corrosion process. Therefore, it is concluded that the ferrite content directly influences the pitting behavior of the material. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

16 pages, 6797 KiB  
Article
Improving the Metal Inert Gas Welding Efficiency and Microstructural Stability in the Butt and Lap Joints of Aluminum Automotive Components Using Sc- and Zr-Enhanced Filler Wires
by Hansol Ko, Hye-Jin Kim, Dong-Yoon Kim and Jiyoung Yu
Metals 2025, 15(1), 1; https://doi.org/10.3390/met15010001 - 24 Dec 2024
Viewed by 638
Abstract
The grain growth in the fusion zone (FZ) and heat-affected zone (HAZ) of metal inert gas (MIG) welding processes negatively affect the mechanical properties of aluminum alloy MIG welds used in automotive components. Although the addition of Sc- and Zr-based filler wires can [...] Read more.
The grain growth in the fusion zone (FZ) and heat-affected zone (HAZ) of metal inert gas (MIG) welding processes negatively affect the mechanical properties of aluminum alloy MIG welds used in automotive components. Although the addition of Sc- and Zr-based filler wires can refine weld microstructures and enhance the mechanical properties, conditions resembling actual automotive component joints have not been sufficiently investigated. In this study, 5083-O aluminum alloy base material was welded into butt and lap joints using conventional 5000-series aluminum alloy filler wires (Al-5.0Mg) and wires containing Sc and Zr (Al-4.8Mg-0.7Sc-0.3Zr) under various heat input conditions. The mechanical properties of the welds were evaluated via tensile tests, and the microstructures in the FZ and HAZ were analyzed. In butt joints, Al-4.8Mg-0.7Sc-0.3Zr exhibited a finer and more uniform grain structure with increased tensile strength compared with those welded using Al-5.0Mg. The microstructure became coarser with the increased heat input, and the tensile strength tended to decrease. In lap joints, the tensile-shear strength of Al-4.8Mg-0.7Sc-0.3Zr was higher than that of Al-5.0Mg; it further increased with the increase in the amount of deposited metal. The coarsening of the microstructure with the increased heat input was disadvantageous for the tensile-shear strength, and the increased weld size offset the adverse effects of the coarse microstructure. These results indicate that the heat input and the amount of deposited metal must be optimized to ensure stiffness in various joints of automotive components. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

15 pages, 18440 KiB  
Article
Evaluation of Continuous GMA Welding Characteristics Based on the Copper-Plating Method of Solid Wire Surfaces
by Dong-Yoon Kim and Jiyoung Yu
Metals 2024, 14(11), 1300; https://doi.org/10.3390/met14111300 - 18 Nov 2024
Cited by 1 | Viewed by 919
Abstract
Gas metal arc welding (GMAW) is widely used in various industries, such as automotive and heavy equipment manufacturing, because of its high productivity and speed, with solid wires being selected based on the mechanical properties required for welded joints. GMAW consists of various [...] Read more.
Gas metal arc welding (GMAW) is widely used in various industries, such as automotive and heavy equipment manufacturing, because of its high productivity and speed, with solid wires being selected based on the mechanical properties required for welded joints. GMAW consists of various components, among which consumables such as the contact tip and continuously fed solid wire have a significant impact on the weld quality. In particular, the copper-plating method can affect the conductivity and arc stability of the solid wire, causing differences in the continuous welding performance. This study evaluated the welding performance during 60 min continuous GMAW using an AWS A5.18 ER70S-3 solid wire, which was copper-plated using chemical plating (C-wire) and electroplating (E-wire). The homogeneity and adhesion of the copper-plated surface of the E-wire were superior to those of the C-wire. The E-wire exhibited better performance in terms of arc stability. The wear rate of the contact tip was approximately 45% higher when using the E-wire for 60 min of welding compared with the C-wire, which was attributed to the larger variation rate in the cast and helix in the E-wire. Additionally, the amount of spatter adhered to the nozzle during 60 min, with the E-wire averaging 5.9 g, approximately half that of the C-wire at 12.9 g. The E-wire exhibits superior arc stability compared with the C-wire based on the spatter amount adhered to the nozzle. This study provides an important reference for understanding the impact of copper plating methods and wire morphology on the replacement cycles of consumable welding parts in automated welding processes such as continuous welding and wire-arc additive manufacturing. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

15 pages, 5636 KiB  
Article
Comparison of FE Simulation and Experiment on Tensile Test of TWB-HPF 22MnB5 Steel
by Ji-Ho Eom, Chul Kyu Jin, Dae-Young Ahn, JSS Babu, Jun-Young Jang and Min Sik Lee
Metals 2024, 14(10), 1176; https://doi.org/10.3390/met14101176 - 16 Oct 2024
Viewed by 1150
Abstract
Finite element (FE) analysis of the tensile test of TWB-HPF 22MnB5 steel was performed and compared with the experimental results. To improve the accuracy of the simulation, the damage theory of FLD and ductile damage theory were used in 2D and 3D simulations. [...] Read more.
Finite element (FE) analysis of the tensile test of TWB-HPF 22MnB5 steel was performed and compared with the experimental results. To improve the accuracy of the simulation, the damage theory of FLD and ductile damage theory were used in 2D and 3D simulations. The tensile strength of 22MnB5 steel was determined under various welding heat inputs for FE simulation. Crack propagation of the welded region indicated that the fracture was observed in the base metal under normal welding conditions. Also, the crack propagated along the HAZ region due to higher heat input of the welding, and lead fractures have been highlighted as a potential complication. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

17 pages, 3429 KiB  
Article
Modeling Yield Strength of Austenitic Stainless Steel Welds Using Multiple Regression Analysis and Machine Learning
by Sukil Park, Myeonghwan Choi, Dongyoon Kim, Cheolhee Kim and Namhyun Kang
Metals 2023, 13(9), 1625; https://doi.org/10.3390/met13091625 - 20 Sep 2023
Cited by 1 | Viewed by 1912
Abstract
Designing welding filler metals with low cracking susceptibility and high strength is essential in welding low-temperature base metals, such as austenitic stainless steel, which is widely utilized for various applications. A strength model for weld metals using austenitic stainless steel consumables has not [...] Read more.
Designing welding filler metals with low cracking susceptibility and high strength is essential in welding low-temperature base metals, such as austenitic stainless steel, which is widely utilized for various applications. A strength model for weld metals using austenitic stainless steel consumables has not yet been developed. In this study, such a model was successfully developed. Two types of models were developed and analyzed: conventional multiple regression and machine-learning-based models. The input variables for these models were the chemical composition and heat input per unit length. Multiple regression analysis utilized five statistically significant input variables at a significance level of 0.05. Among the prediction models using machine learning, the stepwise linear regression model showed the highest coefficient of determination (R2) value and demonstrated practical advantages despite having a slightly higher mean absolute percentage error (MAPE) than the Gaussian process regression models. The conventional multiple regression model exhibited a higher R2 (0.8642) and lower MAPE (3.75%) than the machine-learning-based predictive models. Consequently, the models developed in this study effectively predicted the variation in the yield strength resulting from dilution during the welding of high-manganese steel with stainless-steel-based welding consumables. Furthermore, these models can be instrumental in developing new welding consumables, thereby ensuring the desired yield strength levels. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

Back to TopTop