Metabolomics and Plant Defence, 2nd Edition

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Plant Metabolism".

Deadline for manuscript submissions: 5 December 2025 | Viewed by 857

Special Issue Editors


E-Mail Website
Guest Editor
Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
Interests: plant-microbe interaction; phytohormone; plant immunity; plant physiology; microbe genetics and gene function analysis; oilseed rape resistance; genetic engineering
Special Issues, Collections and Topics in MDPI journals
College of Life Science, Chongqing Normal University, Chongqing 401331, China
Interests: plant immunity; Sclerotinia sclerotiorum
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce the launch of a new Special Issue, “Metabolomics and Plant Defence: 2nd Edition”, a continuation of a previously successful Special Issue.

The environment is not always suitable for plant growth and development. To combat the adversities relating to biotic and abiotic stress, plants need to change their metabolic pathways to adapt to the environment. During this process, some special metabolites such as defence phytohormones or flavonoids might be produced or enhanced, which are beneficial to plant defence and help them survive under environmental stress.

For this Special Issue, we aim to collate research that is relevant to all aspects of plant metabolomics in response to biotic and abiotic stress; the positive and negative effects of special metabolites on plant defence, growth, and development; phytohormone-regulated metabolic homeostasis; and advances in methodologies for research on primary and secondary metabolism related to plant defence. We welcome original research articles as well as in-depth reviews covering these topics.

Prof. Dr. Shitou Xia
Dr. Junxing Lu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metabolomics
  • plant defence
  • biotic and abiotic stress
  • phytohormone
  • metabolites and metabolic homeostasis
  • metabolomic profiling methodology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 11905 KiB  
Article
Metabolomic Profiling Reveals the Effects of Cu-Ag Nanoparticles on Tomato Bacterial Wilt
by Weimin Ning, Lei Jiang, Mei Yang, Tianhao Lei, Chan Liu, Fei Zhao, Pan Shu and Yong Liu
Metabolites 2025, 15(8), 548; https://doi.org/10.3390/metabo15080548 - 13 Aug 2025
Viewed by 304
Abstract
Background: The bacterial wilt of tomatoes, caused by Ralstonia solanacearum, is a soil-borne plant disease that causes substantial agricultural economic losses. Various nanoparticles have been utilized as antibacterial agents to mitigate pathogenic destructiveness and improve crop yields. However, there is a lack [...] Read more.
Background: The bacterial wilt of tomatoes, caused by Ralstonia solanacearum, is a soil-borne plant disease that causes substantial agricultural economic losses. Various nanoparticles have been utilized as antibacterial agents to mitigate pathogenic destructiveness and improve crop yields. However, there is a lack of in-depth research on how nanoparticles affect tomato metabolite levels to regulate the bacterial wilt of tomatoes. Methods: In this study, healthy and bacterial wilt-infected tomatoes were treated with Cu-Ag nanoparticles, and a metabolomics analysis was carried out. Results: The results showed that Cu-Ag nanoparticles had a significant prevention and control effect on the bacterial wilt of tomatoes. Metabolomic analysis revealed that the nanoparticles could significantly up-regulate the expression levels of terpenol lipids, organic acids, and organic oxygen compounds in diseased tomatoes, and enhance key metabolic pathways such as amino acid metabolism, carbohydrate metabolism, secondary metabolite metabolism, and lipid metabolism. These identified metabolites and pathways could regulate plant growth and defense against pathogens. Correlation analysis between the tomato microbiome and metabolites showed that most endophytic microorganisms and rhizospheric bacteria were positively correlated with fatty acyls groups and organic oxygen compounds. Conclusions: This study reveals that Cu-Ag nanoparticles can actively regulate the bacterial wilt of tomatoes by up-regulating the levels of lipid metabolism and organic oxygen compounds, providing an important theoretical basis for the application of nanoparticles in agriculture. Full article
(This article belongs to the Special Issue Metabolomics and Plant Defence, 2nd Edition)
Show Figures

Figure 1

19 pages, 2222 KiB  
Article
Low Metabolic Variation in Environmentally Diverse Natural Populations of Temperate Lime Trees (Tilia cordata)
by Carl Barker, Paul Ashton and Matthew P. Davey
Metabolites 2025, 15(8), 509; https://doi.org/10.3390/metabo15080509 - 31 Jul 2025
Viewed by 245
Abstract
Background: Population persistence for organisms to survive in a world with a rapidly changing climate will require either dispersal to suitable areas, evolutionary adaptation to altered conditions and/or sufficient phenotypic plasticity to withstand it. Given the slow growth and geographically isolated populations [...] Read more.
Background: Population persistence for organisms to survive in a world with a rapidly changing climate will require either dispersal to suitable areas, evolutionary adaptation to altered conditions and/or sufficient phenotypic plasticity to withstand it. Given the slow growth and geographically isolated populations of many tree species, there is a high likelihood of local adaption or the acclimation of functional traits in these populations across the UK. Objectives: Given the slow growth and often isolated populations of Tilia cordata (lime tree), we hypothesised that there is a high likelihood of local adaptation or the acclimation of metabolic traits in these populations across the UK. Our aim was to test if the functional metabolomic traits of Tilia cordata (lime tree), collected in situ from natural populations, varied within and between populations and to compare this to neutral allele variation in the population. Methods: We used a metabolic fingerprinting approach to obtain a snapshot of the metabolic status of leaves collected from T. cordata from six populations across the UK. Environmental metadata, longer-term functional traits (specific leaf area) and neutral allelic variation in the population were also measured to assess the plastic capacity and local adaptation of the species. Results: The metabolic fingerprints derived from leaf material collected and fixed in situ from individuals in six populations of T. cordata across its UK range were similar, despite contrasting environmental conditions during sampling. Neutral allele frequencies showed almost no significant group structure, indicating low differentiation between populations. The specific leaf area did vary between sites. Conclusions: The low metabolic variation between UK populations of T. cordata despite contrasting environmental conditions during sampling indicates high levels of phenotypic plasticity. Full article
(This article belongs to the Special Issue Metabolomics and Plant Defence, 2nd Edition)
Show Figures

Figure 1

Back to TopTop