Metabolomics in Neurodegenerative Diseases, 2nd Edition

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Cell Metabolism".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 623

Special Issue Editors


E-Mail Website
Guest Editor
Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 49546, USA
Interests: Alzheimer’s disease; mild cognitive impairment; Parkinson’s disease; delirium; neurodegeneration; metabolomics; biomarkers; biochemistry; etiology; pathophysiology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
Interests: delirium; Alzheimer’s disease; Parkinson’s disease; metabolomics; biomarkers; biochemistry; etiology; pathophysiology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The application of metabolomics in neurodegenerative diseases could provide molecular insights into conditions such as Alzheimer's disease and Parkinson's disease. This promising discipline scrutinizes the intricate metabolic profiles of biological systems, aiding in the identification of biomarkers, unraveling disease mechanisms, and enhancing diagnostic precision. By employing advanced analytical techniques, such as mass spectrometry and nuclear magnetic resonance spectroscopy, researchers can evaluate the alterations in metabolite patterns associated with neurodegeneration. These alterations encompass a disrupted energy metabolism, aberrant lipid processing, and amino acid imbalances, offering valuable information regarding the intricate pathophysiology of these diseases. Metabolomics also offers opportunities for the development of novel therapeutic targets and personalized interventions. However, challenges related to standardization, data integration, and understanding the causative relationships remain. This Special Issue of Metabolites underscores the role of metabolomics in enhancing our comprehension of neurodegenerative disorders, fostering innovative diagnostic avenues and treatment strategies.

Dr. Stewart Francis Graham
Dr. Nazia M. Saiyed
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neurodegenerative disease
  • Alzheimer’s
  • Parkinson’s
  • Huntington’s
  • ALS
  • neurodegeneration
  • bi-omarkers
  • metabolism
  • etiology
  • pathophysiology
  • biochemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 4582 KiB  
Article
Multiple Hits on Cerebral Folate, Tetrahydrobiopterin and Dopamine Metabolism in the Pathophysiology of Parkinson’s Disorder: A Limited Study of Post-Mortem Human Brain Tissues
by Dhruti Balakrishna Doddaballapur, Derren J. Heyes and Jaleel A. Miyan
Metabolites 2025, 15(5), 307; https://doi.org/10.3390/metabo15050307 - 5 May 2025
Viewed by 484
Abstract
Background: Parkinson’s disorder (PD) affects around 1:500 individuals and is associated with enlarged ventricles and symptoms of normal pressure hydrocephalus (NPH). These features suggest disrupted cerebrospinal fluid (CSF) dynamics and folate metabolism. With L-DOPA treatment showing diminishing benefits over time, there is [...] Read more.
Background: Parkinson’s disorder (PD) affects around 1:500 individuals and is associated with enlarged ventricles and symptoms of normal pressure hydrocephalus (NPH). These features suggest disrupted cerebrospinal fluid (CSF) dynamics and folate metabolism. With L-DOPA treatment showing diminishing benefits over time, there is an urgent need to investigate upstream metabolic disruptions, including folate and tetrahydrobiopterin (BH4) pathways, in post-mortem CSF and brain tissue to understand their roles in PD pathogenesis. Methods: CSF and brain tissue from 20 PD patients (mean age 84 years; 55% male; disease duration 10–30 years) and 20 controls (mean age 82 years; 50% male) were analysed. Western and Dot Blots measured proteins and metabolites, spectroscopic assays assessed enzyme activities, BH4 and Neopterin levels were measured using ELISA, and levels of hydrogen peroxide, used as a proxy for reactive oxygen species, and calcium were quantified using horseradish peroxidase and flame photometry assays, respectively. ClinVar genetic data were analysed for variants in genes encoding key enzymes. Statistical significance was assessed using unpaired t-tests (p < 0.05). Results: All enzymes were significantly reduced in PD compared to controls (p < 0.01) except for methyltetrahydrofolate reductase (MTHFR), which was elevated (p < 0.0001). Enzymes were functional in control but undetectable in PD CSF except tyrosine hydroxylase (TH). BH4 and Neopterin were elevated in PD CSF (p < 0.0001, p < 0.001) but significantly reduced (p < 0.001) or unchanged in tissue. Peroxide was increased in both PD CSF (p < 0.001) and tissue (p < 0.0001) selectively inhibiting TH. Calcium was 40% higher in PD than controls (p < 0.05). No pathogenic variants in enzyme genes were found in ClinVar data searches, suggesting the observed deficiencies are physiological. Conclusions: We identified significant disruptions in folate and BH4 pathways in PD, with enzyme deficiencies, oxidative stress and calcium dysregulation pointing to choroid plexus dysfunction. These findings highlight the choroid plexus and CSF as key players in cerebral metabolism and promote further exploration of these as therapeutic targets to address dopaminergic dysfunction and ventricular enlargement in PD. Full article
(This article belongs to the Special Issue Metabolomics in Neurodegenerative Diseases, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop