Urban Form and the Urban Heat Island Effect (Second Edition)

A special issue of Land (ISSN 2073-445X). This special issue belongs to the section "Urban Contexts and Urban-Rural Interactions".

Deadline for manuscript submissions: closed (25 March 2025) | Viewed by 896

Special Issue Editor


E-Mail Website
Guest Editor
Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
Interests: GNSS/GPS meteorological and sustainability applications; urban heat island; ubiquitous positioning; sensor integration
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Humans had use more of the Earth's land surface in order to accommodate the increase in the population and human activities. Urbanisation causes issues and problems to the ecosystem, the natural environment and humans, such as air and water pollution, high energy consumption, mental and physical health problems, etc. Studies on urban form and urban heat island (UHI) are crucial to analyse and reduce the adverse processes and consequences of urbanisation, and help with efficient and effective town planning.

Our aim is to publish high-quality papers on urban form options and their performance in relation to various current and future challenges, advanced observations and observational methods/technologies for UHI determination and monitoring, and the impact of building designs, land use and town planning on the UHI effect.

We will publish reviews, regular research papers, perspective and discussion papers, short communications and research notes, and there is no restriction on the length of the papers. The themes are (but are not limited to):

  • Urban form options;
  • Impact of urban form on ecosystem and/or environments;
  • Observation, effect and analysis of UHI;
  • Satellite-/UAV-based urban form and UHI observation;
  • UHI modelling;
  • Interaction between urban form and UHI;
  • Urban form- and UHI-related policymaking;
  • Strategies on urban form and infrastructure;
  • Energy flow in urban ecosystems;
  • Smart city design and analysis in relation to urban form and UHI.

Dr. Lawrence Lau
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Land is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • urban form
  • urban heat island (UHI)
  • earth observation
  • remote sensing
  • smart city
  • spatial analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2037 KiB  
Article
Urban Tree CO2 Compensation by Albedo
by Desirée Muscas, Livia Bonciarelli, Mirko Filipponi, Fabio Orlandi and Marco Fornaciari
Land 2025, 14(8), 1633; https://doi.org/10.3390/land14081633 - 13 Aug 2025
Viewed by 181
Abstract
Urban form and surface properties significantly influence city liveability. Material choices in urban infrastructure affect heat absorption and reflectivity, contributing to the urban heat island (UHI) effect and residents’ thermal comfort. Among UHI mitigation strategies, urban parks play a key role by modifying [...] Read more.
Urban form and surface properties significantly influence city liveability. Material choices in urban infrastructure affect heat absorption and reflectivity, contributing to the urban heat island (UHI) effect and residents’ thermal comfort. Among UHI mitigation strategies, urban parks play a key role by modifying the microclimate through albedo and evapotranspiration. Their effectiveness depends on their composition, such as tree cover, herbaceous layers, and paved surfaces. The selection of tree species affects the radiation dynamics via foliage color, leaf persistence, and plant morphology. Despite their ecological potential, park designs often prioritize aesthetics and cost over environmental performance. This study proposes a novel approach using CO2 compensation as a decision-making criterion for surface allocation. By applying the radiative forcing concept, surface albedo variations were converted into CO2-equivalent emissions to allow for a cross-comparison with different ecosystem services. This method, applied to four parks in two Italian cities, employed reference data, drone surveys, and satellite imagery processed through the Greenpix software v1.0.6. The results showed that adjusting the surface albedo can significantly reduce CO2 emissions. While dark-foliage trees may underperform compared to certain paved surfaces, light-foliage trees and lawns increase the reflectivity. Including evapotranspiration, the CO2 compensation benefits rose by over fifty times, supporting the expansion of vegetated surfaces in urban parks for climate resilience. Full article
(This article belongs to the Special Issue Urban Form and the Urban Heat Island Effect (Second Edition))
Show Figures

Figure 1

20 pages, 2761 KiB  
Article
Assessing Land Use and Urban Form Effects on Summer Air Temperatures Using a City-Wide Environmental Sensor Network in Seoul, South Korea
by Minsun Kim, Jongho Won and Hyungkyoo Kim
Land 2025, 14(8), 1628; https://doi.org/10.3390/land14081628 - 12 Aug 2025
Viewed by 276
Abstract
Climate change intensifies the challenge of elevated temperatures in dense urban areas, notably in Seoul, South Korea. This study investigates the effects of land use and urban form on summer air temperatures by leveraging Seoul’s city-wide Smart Seoul Data of Things sensor network. [...] Read more.
Climate change intensifies the challenge of elevated temperatures in dense urban areas, notably in Seoul, South Korea. This study investigates the effects of land use and urban form on summer air temperatures by leveraging Seoul’s city-wide Smart Seoul Data of Things sensor network. Using spatial regression models and temperature data collected during July and August 2021, the analysis identifies key environmental factors associated with urban heat dynamics. The results show that medium- and high-density residential areas, industrial zones, and roads consistently increase temperatures, while greenery, taller buildings, and greater urban porosity contribute to cooling effects. The findings highlight the need for urban planning strategies that expand green spaces, promote vertical development with attention to ventilation, and reconfigure built environments to enhance thermal comfort. This study provides robust empirical insights and offers evidence-based recommendations for climate-responsive urban planning and policies in Seoul and similar high-density cities worldwide. Full article
(This article belongs to the Special Issue Urban Form and the Urban Heat Island Effect (Second Edition))
Show Figures

Figure 1

Back to TopTop