Topical Collection "Insect Sensory Biology"

Editors

Dr. Sylvia Anton
E-Mail Website
Collection Editor
Institute for Genetics, Environment and Plant Protection, INRAE/Institut Agro/Université de Rennes1, Angers, France
Interests: insect olfactory-guided behavior; olfactory coding; neuroanatomy; plasticity of sensory systems
Dr. Romina B. Barrozo
E-Mail Website
Collection Editor
Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET, DBBE, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
Interests: insect's taste system; neurophysiology; feeding behavior; plasticity

Topical Collection Information

Dear Colleagues,

Insects are highly successful organisms with sophisticated sensory equipment. Investigating their sensory biology is crucial in order to understand their rapid adaptation to a large variety of environments. Here we would like to illustrate how sensory systems deal with adaptations to specific natural or anthropogenic environments, and how these findings may help in ecosystem conservation or the control of insect pests. For this Topical Collection we invite contributions dealing with advances in insect sensory biology from molecular, anatomical, and physiological aspects up to behavioral, ecological, and evolutionary studies.

Dr. Sylvia Anton
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • insect
  • behavior
  • anatomy of sensory structures
  • sensory physiology
  • central integration of sensory information
  • molecular characterization of sensory systems
  • sensory ecology

Published Papers (17 papers)

2022

Jump to: 2021, 2020

Article
Validation of an Optogenetic Approach to the Study of Olfactory Behavior in the T-Maze of Drosophila melanogaster Adults
Insects 2022, 13(8), 662; https://doi.org/10.3390/insects13080662 - 22 Jul 2022
Viewed by 318
Abstract
Optogenetics enables the alteration of neural activity using genetically targeted expression of light activated proteins for studying behavioral circuits in several species including Drosophila. The main idea behind this approach is to replace the native behavioral stimulus by the light-induced electrical activation [...] Read more.
Optogenetics enables the alteration of neural activity using genetically targeted expression of light activated proteins for studying behavioral circuits in several species including Drosophila. The main idea behind this approach is to replace the native behavioral stimulus by the light-induced electrical activation of different points of the circuit. Therefore, its effects on subsequent steps of the circuit or on the final behavior can be analyzed. However, the use of optogenetics to dissect the receptor elements of the adult olfactory behavior presents a challenge due to one additional factor: Most odorants elicit attraction or avoidance depending on their concentration; this complicates the representative replacement of odor activation of olfactory sensory neurons (OSNs) by light. Here, we explore a dual excitation model where the subject is responding to odors while the OSNs are optogenetically activated. Thereby, we can assess if and how the olfactory behavior is modified. We measure the effects of light excitation on the response to several odorant concentrations. The dose-response curve of these flies still depends on odor concentration but with reduced sensitivity compared to olfactory stimulation alone. These results are consistent with behavioral tests performed with a background odor and suggest an additive effect of light and odor excitation on OSNs. Full article
Show Figures

Figure 1

Article
Brain Investigation on Sexual Dimorphism in a Gynandromorph Moth
Insects 2022, 13(3), 284; https://doi.org/10.3390/insects13030284 - 14 Mar 2022
Viewed by 654
Abstract
The present study was dedicated to investigating the anatomical organization of distinct neuropils within the two brain hemispheres of a gynandromorphic moth of the species Helicoverpa armigera. High quality confocal imaging of a synapsin immuno-stained preparation combined with three-dimensional reconstructions made it possible [...] Read more.
The present study was dedicated to investigating the anatomical organization of distinct neuropils within the two brain hemispheres of a gynandromorphic moth of the species Helicoverpa armigera. High quality confocal imaging of a synapsin immuno-stained preparation combined with three-dimensional reconstructions made it possible to identify several brain structures involved in processing odor input and to measure their volumes in the male and female hemispheres. Thus, in addition to reconstructing the antennal lobes, we also made digital models of the mushroom body calyces, the pedunculus, and the vertical and medial lobes. As previously reported, prominent sexual dimorphism was demonstrated in the antennal lobes via the identification of a male-specific macroglomerular complex (MGC) and a female-specific complex (Fc) in each of the two brain hemispheres of the gynandromorph. Additionally, sex-specific differences were found in volume differences for three other neuropil structures—the calyces, pedunculus, and vertical lobe. The putative purpose of larger volumes of three mushroom body neuropils in females as compared to males is discussed. Full article
Show Figures

Figure 1

Article
Scanning Electron Microscopic Analysis of Antennal Sensilla and Tissue-Expression Profiles of Chemosensory Protein Genes in Ophraella communa (Coleoptera: Chrysomelidae)
Insects 2022, 13(2), 183; https://doi.org/10.3390/insects13020183 - 09 Feb 2022
Cited by 1 | Viewed by 569
Abstract
Ophraella communa is an efficient biocontrol agent used against the invasive weed Ambrosia artemisiifolia. It is an herbivorous insect that feeds on specific plants; the olfactory functions of this insects plays an important role in their search for host plants. There are [...] Read more.
Ophraella communa is an efficient biocontrol agent used against the invasive weed Ambrosia artemisiifolia. It is an herbivorous insect that feeds on specific plants; the olfactory functions of this insects plays an important role in their search for host plants. There are no reports on O. communa sensilla types, morphology, or chemosensory protein (CSP) genes. In this study, we observed the external structure and distribution of antennal sensilla in adult O. communa antennae by scanning electron microscopy; moreover, we cloned 11 CSPs (CSP1–CSP11) and elucidated their tissue-expression profiles using quantitative real-time polymerase chain reaction. Six types of sensilla were identified: sensilla trichodea (including two subtypes), sensilla chaetica, sensilla basiconica (including two subtypes), sensilla styloconica, sensilla coeloconica, and Böhm bristles. Both male and female antennae had all six types of sensilla, and no sexual dimorphism was noted in sensillar types or distribution. We also found that the expression levels of CSP2, CSP3, CSP4, CSP6, and CSP7 in male and female antennae were higher than those in other tissues, which suggests that these five CSPs may be related to olfactory function in O. communa. Ultimately, our results lay the foundation for interpreting the olfactory functions of adult O. communa. Full article
Show Figures

Figure 1

Article
Species-Specificity in Thermopreference and CO2-Gated Heat-Seeking in Culex Mosquitoes
Insects 2022, 13(1), 92; https://doi.org/10.3390/insects13010092 - 14 Jan 2022
Cited by 3 | Viewed by 714
Abstract
Combining thermopreference (Tp) and CO2-gated heat-seeking assays, we studied the thermal preferendum and response to thermal cues in three Culex mosquito species exhibiting differences in native habitat and host preference (e.g., biting cold and/or warm-blooded animals). Results show that [...] Read more.
Combining thermopreference (Tp) and CO2-gated heat-seeking assays, we studied the thermal preferendum and response to thermal cues in three Culex mosquito species exhibiting differences in native habitat and host preference (e.g., biting cold and/or warm-blooded animals). Results show that these species differ in both Tp and heat-seeking behavior. In particular, we found that Culex territans, which feed primarily on cold-blood hosts, did not respond to heat during heat-seeking assays, regardless of the CO2 concentration, but exhibited an intermediate Tp during resting. In contrast, Cx. quinquefasciatus, which feeds on warm blooded hosts, sought the coolest locations on a thermal gradient and responded only moderately to thermal stimuli when paired with CO2 at higher concentrations. The third species, Cx. tarsalis, which has been shown to feed on a wide range of hosts, responded to heat when paired with high CO2 levels and exhibited a high Tp. This study provides the first insights into the role of heat and CO2 in the host seeking behavior of three disease vectors in the Culex genus and highlights differences in preferred resting temperatures. Full article
Show Figures

Graphical abstract

2021

Jump to: 2022, 2020

Article
Habituation to a Deterrent Plant Alkaloid Develops Faster in the Specialist Herbivore Helicoverpa assulta Than in Its Generalist Congener Helicoverpa armigera and Coincides with Taste Neuron Desensitisation
Insects 2022, 13(1), 21; https://doi.org/10.3390/insects13010021 - 23 Dec 2021
Viewed by 919
Abstract
The two closely related moth species, Helicoverpa armigera and H. assulta differ strongly in their degree of host-plant specialism. In dual-choice leaf disk assays, caterpillars of the two species that had been reared on standard artificial diet were strongly deterred by the plant-derived [...] Read more.
The two closely related moth species, Helicoverpa armigera and H. assulta differ strongly in their degree of host-plant specialism. In dual-choice leaf disk assays, caterpillars of the two species that had been reared on standard artificial diet were strongly deterred by the plant-derived alkaloid strychnine. However, caterpillars of both species reared on artificial diet containing strychnine from neonate to the 5th instar were insensitive to this compound. Fifth instar caterpillars of H. assulta and 4th or 5th instars of H. armigera not exposed to strychnine before were subjected to strychnine-containing diet for 24 h, 36 h, 48 h, or 72 h. Whereas H. assulta displayed habituation to strychnine after 48 h, it took until 72 h for H. armigera to become habituated. Electrophysiological tests revealed that a deterrent-sensitive neuron in the medial sensillum styloconicum of both species displayed significantly reduced sensitivity to strychnine that correlated with the onset of habituation. We conclude that the specialist H. assulta habituated faster to strychnine than the generalist H. armigera and hypothesis that desensitization of deterrent-sensitive neurons contributed to habituation. Full article
Show Figures

Graphical abstract

Article
Morphology of the Antennal Sensilla of Notonectoidea and Comparison of Evolutionary Changes in Sensilla Types and Distribution in Infraorder Nepomorpha (Insecta: Heteroptera)
Insects 2021, 12(12), 1121; https://doi.org/10.3390/insects12121121 - 14 Dec 2021
Cited by 1 | Viewed by 854
Abstract
This article introduces the results of a study of three families of Nepomorpha and is the last part of a series of studies that sums up our work on the morphologies of the antennal sensory structures in this taxon. The morphologies and distribution [...] Read more.
This article introduces the results of a study of three families of Nepomorpha and is the last part of a series of studies that sums up our work on the morphologies of the antennal sensory structures in this taxon. The morphologies and distribution of the sensilla in the families Notonectidae, Pleidae and Helotrephidae were studied under a scanning electron microscope. Six main types (sensilla trichodea, chaetica, campaniformia, basiconica, ampullacea and coeloconica) and ten subtypes (five subtypes of sensilla trichodea and five subtypes of sensilla basiconica) were described. The results were compared with other studies on the antennal sensilla of Nepomorpha in order to assess evolutionary changes within the infraorder. With the use of cladistics analysis, the monophyly of the families Nepidae, Micronectidae, Corixidae and Gelastocoridae was supported. On the other hand, the occurrence of some clades forming superfamilies was weakly supported by bootstrap analysis. These results, supported by presence of the numerous autapomorphies, suggest that antennal sensilla evolved within inner groups. Full article
Show Figures

Figure 1

Review
Evolution of the Sex Pheromone Communication System in Ostrinia Moths
Insects 2021, 12(12), 1067; https://doi.org/10.3390/insects12121067 - 28 Nov 2021
Viewed by 941
Abstract
It remains a conundrum in the evolution of sexual communication how the signals and responses can co-ordinate the changes during speciation. The genus Ostrinia contains several closely related species as well as distinctive strains with pheromone polymorphism and represents an example of ongoing [...] Read more.
It remains a conundrum in the evolution of sexual communication how the signals and responses can co-ordinate the changes during speciation. The genus Ostrinia contains several closely related species as well as distinctive strains with pheromone polymorphism and represents an example of ongoing speciation. Extensive studies in the genus, especially in the species the European corn borer O. nubilalis (ECB), the Asian corn borer O. furnacalis (ACB) and the adzuki bean borer O. scapulalis (ABB), have provided valuable insights into the evolution of sex pheromone communication. This review presents a comprehensive overview of the research on pheromone communication in different Ostrinia species over the past four decades, including pheromone identification and biosynthesis, the ligand profiles of pheromone receptor (PR) genes, the physiology of peripheral olfactory sensory neurons (OSNs) and the projection pattern to the antennal lobe. By integrating and comparing the closely related Ostrinia species and strains, it provides an evolutionary perspective on the sex pheromone communication in moths in general and also outlines the outstanding questions that await to be elucidated by future studies. Full article
Show Figures

Figure 1

Article
Sensory Organ Investment Varies with Body Size and Sex in the Butterfly Pieris napi
Insects 2021, 12(12), 1064; https://doi.org/10.3390/insects12121064 - 27 Nov 2021
Viewed by 966
Abstract
In solitary insect pollinators such as butterflies, sensory systems must be adapted for multiple tasks, including nectar foraging, mate-finding, and locating host-plants. As a result, the energetic investments between sensory organs can vary at the intraspecific level and even among sexes. To date, [...] Read more.
In solitary insect pollinators such as butterflies, sensory systems must be adapted for multiple tasks, including nectar foraging, mate-finding, and locating host-plants. As a result, the energetic investments between sensory organs can vary at the intraspecific level and even among sexes. To date, little is known about how these investments are distributed between sensory systems and how it varies among individuals of different sex. We performed a comprehensive allometric study on males and females of the butterfly Pieris napi where we measured the sizes and other parameters of sensory traits including eyes, antennae, proboscis, and wings. Our findings show that among all the sensory traits measured, only antenna and wing size have an allometric relationship with body size and that the energetic investment in different sensory systems varies between males and females. Moreover, males had absolutely larger antennae and eyes, indicating that they invest more energy in these organs than females of the same body size. Overall, the findings of this study reveal that the size of sensory traits in P. napi are not necessarily related to body size and raises questions about other factors that drive sensory trait investment in this species and in other insect pollinators in general. Full article
Show Figures

Graphical abstract

Review
Stink Bug Communication and Signal Detection in a Plant Environment
Insects 2021, 12(12), 1058; https://doi.org/10.3390/insects12121058 - 25 Nov 2021
Cited by 1 | Viewed by 793
Abstract
Plants influenced the evolution of plant-dwelling stink bugs’ systems underlying communication with chemical and substrate-borne vibratory signals. Plant volatiles provides cues that increase attractiveness or interfere with the probability of finding a mate in the field. Mechanical properties of herbaceous hosts and associated [...] Read more.
Plants influenced the evolution of plant-dwelling stink bugs’ systems underlying communication with chemical and substrate-borne vibratory signals. Plant volatiles provides cues that increase attractiveness or interfere with the probability of finding a mate in the field. Mechanical properties of herbaceous hosts and associated plants alter the frequency, amplitude, and temporal characteristics of stink bug species and sex-specific vibratory signals. The specificity of pheromone odor tuning has evolved through highly specific odorant receptors located within the receptor membrane. The narrow-band low-frequency characteristics of the signals produced by abdomen vibration and the frequency tuning of the highly sensitive subgenual organ vibration receptors match with filtering properties of the plants enabling optimized communication. A range of less sensitive mechanoreceptors, tuned to lower vibration frequencies, detect signals produced by other mechanisms used at less species-specific levels of communication in a plant environment. Whereas the encoding of frequency-intensity and temporal parameters of stink bug vibratory signals is relatively well investigated at low levels of processing in the ventral nerve cord, processing of this information and its integration with other modalities at higher neuronal levels still needs research attention. Full article
Show Figures

Figure 1

Article
Olfactory Sensilla and Olfactory Genes in the Parasitoid Wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae)
Insects 2021, 12(11), 998; https://doi.org/10.3390/insects12110998 - 05 Nov 2021
Cited by 1 | Viewed by 812
Abstract
Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) is a tiny natural egg parasitoid of several agricultural pest insects, which has been widely used in the biological control for Plutella xylostella, Helicoverpa armigera, Spodoptera frugiperda and Ectomyelois ceratoniae. However, limited studies have been [...] Read more.
Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) is a tiny natural egg parasitoid of several agricultural pest insects, which has been widely used in the biological control for Plutella xylostella, Helicoverpa armigera, Spodoptera frugiperda and Ectomyelois ceratoniae. However, limited studies have been conducted on T. pretiosum olfactory system, which is critical in regulating insect behaviours. In this study, T. pretiosum adult antennae were investigated under ascanning electron microscopy (SEM). Four types of olfactory sensilla were observed, including chaetica sensilla (CS), trichoid sensilla (TS), faleate sensilla (FS) and placoid sensilla (PS). Using T. pretiosum genome, 22 putative odorant binding proteins (OBPs) and 105 odorant receptors (ORs) were identified, which were further compared with olfactory genes of Apis mellifera, Nasonia vitripennis and Diachasma alloeum. The expression patterns of OBPs between T. pretiosum male and female adults were examined by quantitative real time PCR (qRT-PCR) approaches. Three female-specific OBPs (TpreOBP19, TpreOBP15 and TpreOBP3) were identified, which may play crucial roles in T. pretiosum host-seeking and oviposition behaviours. This study enriches our knowledge of T. pretiosum olfactory genes and improves our understanding of its olfactory system. Full article
Show Figures

Figure 1

Article
Hermetia illucens (L.) (Diptera: Stratiomyidae) Odorant Binding Proteins and Their Interactions with Selected Volatile Organic Compounds: An In Silico Approach
Insects 2021, 12(9), 814; https://doi.org/10.3390/insects12090814 - 11 Sep 2021
Cited by 11 | Viewed by 1585
Abstract
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), has considerable global interest due to its outstanding capacity in bioconverting organic waste to insect biomass, which can be used for livestock, poultry, and aquaculture feed. Mass production of this insect in colonies requires [...] Read more.
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), has considerable global interest due to its outstanding capacity in bioconverting organic waste to insect biomass, which can be used for livestock, poultry, and aquaculture feed. Mass production of this insect in colonies requires the development of methods concentrating oviposition in specific collection devices, while the mass production of larvae and disposing of waste may require substrates that are more palatable and more attractive to the insects. In insects, chemoreception plays an essential role throughout their life cycle, responding to an array of chemical, biological and environmental signals to locate and select food, mates, oviposition sites and avoid predators. To interpret these signals, insects use an arsenal of molecular components, including small proteins called odorant binding proteins (OBPs). Next generation sequencing was used to identify genes involved in chemoreception during the larval and adult stage of BSF, with particular attention to OBPs. The analysis of the de novo adult and larval transcriptome led to the identification of 27 and 31 OBPs for adults and larvae, respectively. Among these OBPs, 15 were common in larval and adult transcriptomes and the tertiary structures of 8 selected OBPs were modelled. In silico docking of ligands confirms the potential interaction with VOCs of interest. Starting from the information about the growth performance of H. illucens on different organic substrates from the agri-food sector, the present work demonstrates a possible correlation between a pool of selected VOCs, emitted by those substrates that are attractive for H. illucens females when searching for oviposition sites, as well as phagostimulants for larvae. The binding affinities between OBPs and selected ligands calculated by in silico modelling may indicate a correlation among OBPs, VOCs and behavioural preferences that will be the basis for further analysis. Full article
Show Figures

Graphical abstract

Article
Olfactory Learning Supports an Adaptive Sugar-Aversion Gustatory Phenotype in the German Cockroach
Insects 2021, 12(8), 724; https://doi.org/10.3390/insects12080724 - 13 Aug 2021
Viewed by 942
Abstract
An association of food sources with odors prominently guides foraging behavior in animals. To understand the interaction of olfactory memory and food preferences, we used glucose-averse (GA) German cockroaches. Multiple populations of cockroaches evolved a gustatory polymorphism where glucose is perceived as a [...] Read more.
An association of food sources with odors prominently guides foraging behavior in animals. To understand the interaction of olfactory memory and food preferences, we used glucose-averse (GA) German cockroaches. Multiple populations of cockroaches evolved a gustatory polymorphism where glucose is perceived as a deterrent and enables GA cockroaches to avoid eating glucose-containing toxic baits. Comparative behavioral analysis using an operant conditioning paradigm revealed that learning and memory guide foraging decisions. Cockroaches learned to associate specific food odors with fructose (phagostimulant, reward) within only a 1 h conditioning session, and with caffeine (deterrent, punishment) after only three 1 h conditioning sessions. Glucose acted as reward in wild type (WT) cockroaches, but GA cockroaches learned to avoid an innately attractive odor that was associated with glucose. Olfactory memory was retained for at least 3 days after three 1 h conditioning sessions. Our results reveal that specific tastants can serve as potent reward or punishment in olfactory associative learning, which reinforces gustatory food preferences. Olfactory learning, therefore, reinforces behavioral resistance of GA cockroaches to sugar-containing toxic baits. Cockroaches may also generalize their olfactory learning to baits that contain the same or similar attractive odors even if they do not contain glucose. Full article
Show Figures

Figure 1

Article
Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung Beetles
Insects 2021, 12(6), 526; https://doi.org/10.3390/insects12060526 - 06 Jun 2021
Viewed by 931
Abstract
To guide their characteristic straight-line orientation away from the dung pile, ball-rolling dung beetles steer according to directional information provided by celestial cues, which, among the most relevant are the sun and polarised skylight. Most studies regarding the use of celestial cues and [...] Read more.
To guide their characteristic straight-line orientation away from the dung pile, ball-rolling dung beetles steer according to directional information provided by celestial cues, which, among the most relevant are the sun and polarised skylight. Most studies regarding the use of celestial cues and their influence on the orientation system of the diurnal ball-rolling beetle have been performed on beetles of the tribe Scarabaeini living in open habitats. These beetles steer primarily according to the directional information provided by the sun. In contrast, Sisyphus fasciculatus, a species from a different dung-beetle tribe (the Sisyphini) that lives in habitats with closely spaced trees and tall grass, relies predominantly on directional information from the celestial pattern of polarised light. To investigate the influence of visual ecology on the relative weight of these cues, we studied the orientation strategy of three different tribes of dung beetles (Scarabaeini, Sisyphini and Gymnopleurini) living within the same biome, but in different habitat types. We found that species within a tribe share the same orientation strategy, but that this strategy differs across the tribes; Scarabaeini, living in open habitats, attribute the greatest relative weight to the directional information from the sun; Sisyphini, living in closed habitats, mainly relies on directional information from polarised skylight; and Gymnopleurini, also living in open habitats, appear to weight both cues equally. We conclude that, despite exhibiting different body size, eye size and morphology, dung beetles nevertheless manage to solve the challenge of straight-line orientation by weighting visual cues that are particular to the habitat in which they are found. This system is however dynamic, allowing them to operate equally well even in the absence of the cue given the greatest relative weight by the particular species. Full article
Show Figures

Figure 1

Article
Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception
Insects 2021, 12(5), 409; https://doi.org/10.3390/insects12050409 - 01 May 2021
Cited by 1 | Viewed by 899
Abstract
The volatile plant compounds (VPC) alter pheromone perception by insects but mixture effects inside insect olfactory landscapes are poorly understood. We measured the activity of receptor neurons tuned to Z7-12Ac (Z7-ORN), a pheromone component, in the antenna and central neurons in male Agrotis [...] Read more.
The volatile plant compounds (VPC) alter pheromone perception by insects but mixture effects inside insect olfactory landscapes are poorly understood. We measured the activity of receptor neurons tuned to Z7-12Ac (Z7-ORN), a pheromone component, in the antenna and central neurons in male Agrotis ipsilon while exposed to simple or composite backgrounds of a panel of VPCs representative of the odorant variety encountered by a moth. Maps of activities were built using calcium imaging to visualize which areas in antennal lobes (AL) were affected by VPCs. We compared the VPC activity and their impact as backgrounds at antenna and AL levels, individually or in blends. At periphery, VPCs showed differences in their capacity to elicit Z7-ORN firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to vapor pressures. The AL neuronal network, which reformats the ORN input, did not improve pheromone salience. We postulate that the AL network evolved to increase sensitivity and to encode for fast changes of pheromone at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component. VPC salience seems to be more important than background complexity. Full article
Show Figures

Figure 1

Article
Ultrastructure of the Olfactory Sensilla across the Antennae and Maxillary Palps of Bactrocera dorsalis (Diptera: Tephritidae)
Insects 2021, 12(4), 289; https://doi.org/10.3390/insects12040289 - 26 Mar 2021
Cited by 3 | Viewed by 1133
Abstract
The sensilla on the antennae and maxillary palps are the most important olfactory organs, via which the insect can perceive the semiochemicals to adjust their host seeking and oviposition behaviors. The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a major agricultural [...] Read more.
The sensilla on the antennae and maxillary palps are the most important olfactory organs, via which the insect can perceive the semiochemicals to adjust their host seeking and oviposition behaviors. The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a major agricultural quarantine pest infesting more than 250 different fruits and vegetables. However, the sensilla involved in olfaction have not been well documented even though a variety of control practices based on chemical communication have already been developed. In this study, the ultrastructure of the sensilla, especially the olfactory sensilla on the antennae and maxillary palps of both males and females, were investigated with field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Three types of olfactory sensillum types including trichodea, basiconica, and coeloconica, and two non-olfactory sensilla including both chaetica and microtrichia, were observed. Each of these three types of olfactory sensilla on the antennae of B. dorsalis were further classified into two subtypes according to the morphology and number of receptor cells. For the first time, the pores on the sensilla trichodea and basiconica cuticular wall were observed in this species, suggesting they are involved in semiochemical perception. This study provides new information on B. dorsalis olfaction, which can be connected to other molecular, genetic, and behavioral research to construct an integral olfactory system model for this species. Full article
Show Figures

Figure 1

Article
Antennal Transcriptome Analysis and Identification of Candidate Chemosensory Genes of the Harlequin Ladybird Beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae)
Insects 2021, 12(3), 209; https://doi.org/10.3390/insects12030209 - 02 Mar 2021
Cited by 5 | Viewed by 1224
Abstract
In predatory ladybirds (Coleoptera: Coccinellidae), antennae are important for chemosensory reception used during food and mate location, and for finding a suitable oviposition habitat. Based on NextSeq 550 Illumina sequencing, we assembled the antennal transcriptome of mated Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) males [...] Read more.
In predatory ladybirds (Coleoptera: Coccinellidae), antennae are important for chemosensory reception used during food and mate location, and for finding a suitable oviposition habitat. Based on NextSeq 550 Illumina sequencing, we assembled the antennal transcriptome of mated Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) males and females and described the first chemosensory gene repertoire expressed in this species. We annotated candidate chemosensory sequences encoding 26 odorant receptors (including the coreceptor, Orco), 17 gustatory receptors, 27 ionotropic receptors, 31 odorant-binding proteins, 12 chemosensory proteins, and 4 sensory neuron membrane proteins. Maximum-likelihood phylogenetic analyses allowed to assign candidate H. axyridis chemosensory genes to previously described groups in each of these families. Differential expression analysis between males and females revealed low variability between sexes, possibly reflecting the known absence of relevant sexual dimorphism in the structure of the antennae and in the distribution and abundance of the sensilla. However, we revealed significant differences in expression of three chemosensory genes, namely two male-biased odorant-binding proteins and one male-biased odorant receptor, suggesting their possible involvement in pheromone detection. Our data pave the way for improving the understanding of the molecular basis of chemosensory reception in Coccinellidae. Full article
Show Figures

Graphical abstract

2020

Jump to: 2022, 2021

Article
The Antennal Pathway of Dragonfly Nymphs, from Sensilla to the Brain
Insects 2020, 11(12), 886; https://doi.org/10.3390/insects11120886 - 16 Dec 2020
Cited by 1 | Viewed by 959
Abstract
Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally [...] Read more.
Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information. Full article
Show Figures

Figure 1

Back to TopTop