Research on Insect Molecular Biology

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Molecular Biology and Genomics".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 10917

Special Issue Editors


E-Mail Website
Guest Editor
Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang 550025, China
Interests: neurophysiological mechanisms of insect behavior;insect molecular biology; integrated pest management; genetics

E-Mail Website
Guest Editor
College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
Interests: insect neurophysiology; insect molecular ecology; colonization of natural enemy insects

Special Issue Information

Dear Colleagues,

Molecular biology techniques are indispensable in entomology for comprehending various insect behavioral mechanisms. Advancements in molecular biology have facilitated the investigation of gene structure, the regulation of gene expression, protein localization, function, activity, and interactions, in addition to the impact of mutations on gene/protein function. These studies have helped elucidate evolutionary processes, ecological dynamics, population genetics, physiological functions, reproductive strategies, and communication and interaction patterns within and between insect populations.

This Special Issue invites research employing molecular biology methodologies across various areas of insect studies. We welcome original research articles and comprehensive review papers that focus on insect behavior, physiology, endocrinology, genomics, and proteomics or utilize both fundamental and advanced molecular biology approaches. All submissions meeting these criteria will be considered for publication in this Special Issue.

Dr. Shunhua Gui
Dr. Yan Shi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular biology
  • physiology
  • endocrinology
  • biochemistry
  • genomics
  • behavior

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 14601 KiB  
Article
Deciphering the Olfactory Mechanisms of Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae): Insights from Transcriptome Analysis and Molecular Docking
by Hui Li, Sheng Qiao, Xiwen Hong and Yangyang Wei
Insects 2025, 16(5), 461; https://doi.org/10.3390/insects16050461 - 27 Apr 2025
Viewed by 70
Abstract
Olfaction is crucial for insect activities such as host seeking, foraging, oviposition, and predator avoidance. While olfactory proteins have been identified across several insect species, their specific functions are largely enigmatic. In this study, we investigated the olfactory proteins of the Angoumois grain [...] Read more.
Olfaction is crucial for insect activities such as host seeking, foraging, oviposition, and predator avoidance. While olfactory proteins have been identified across several insect species, their specific functions are largely enigmatic. In this study, we investigated the olfactory proteins of the Angoumois grain moth, Sitotroga cerealella Olivier. A total of 165 presumptive olfactory genes were identified in the antennal transcriptome of S. cerealella, encompassing 33 odorant-binding proteins (OBPs), 10 chemosensory proteins (CSPs), 58 odorant receptors (ORs), 41 ionotropic receptors (IRs), 21 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). BLASTX and a phylogenetic analysis showed a high similarity of these genes to the orthologs in other model insects. A qRT-PCR analysis demonstrated that ScerOBP15 and ScerOBP23 are specifically and highly expressed in antennae, exhibiting male-biased expression patterns. Moreover, molecular docking revealed their strong binding affinity to the wheat volatiles n-heptadecane and geranyl acetone. Also, the potential active sites within ScerOBP15 and ScerOBP23 that engage with these volatiles have been identified, implying a possible role in host localization. Our findings shed light on the mechanisms underlying the behavioral responses of S. cerealella to wheat odors, enhance our comprehension of their olfactory processes, and pave the way for the development of highly specific and sustainable pest management strategies. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Graphical abstract

13 pages, 2630 KiB  
Article
Rapid and Economic Baculovirus Titer Determination Using a Novel Transgenic Sf9-QE Cell Line
by Hyuk-Jin Moon, Hyun-Jung Kim, Dong-Hyun Lee, Seo-Yeong Mun and Soo-Dong Woo
Insects 2025, 16(4), 426; https://doi.org/10.3390/insects16040426 - 17 Apr 2025
Viewed by 223
Abstract
A baculovirus expression system (BES) for the production of recombinant proteins requires rapid and easy virus titer determination. In this study, a novel direct titration method was developed using a novel Sf9-QE cell line to easily and economically determine virus titers in a [...] Read more.
A baculovirus expression system (BES) for the production of recombinant proteins requires rapid and easy virus titer determination. In this study, a novel direct titration method was developed using a novel Sf9-QE cell line to easily and economically determine virus titers in a short time. This direct titration method can determine virus titers by directly counting the initially infected cells. This method requires the rapid identification of the initial virus-infected cells. The genome of Sf9-QE cells, which fluoresce upon virus infection, was found to contain at least seven copy numbers of the enhanced green fluorescent protein (EGFP) transgene. This result suggests that Sf9-QE cells in the early stages of virus infection can be identified by the high expression of EGFP. It was also shown that for accurate virus titration using the direct titration method, Sf9-QE cells should be used within 3 d of subculturing. Additionally, counting fluorescent cells to establish virus infection should be performed within 15 to 30 h after virus infection for reliable virus titration. The direct titration method using Sf9-QE cells provides a rapid, reliable, and cost-effective alternative for determining baculovirus titers in BES research. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Graphical abstract

13 pages, 2977 KiB  
Article
Adipokinetic Hormones and Their Receptor Regulate the Locomotor Behavior in Tribolium castaneum
by Rui-Han Lu, Xu-Dong Pang, Shuang-Qin Wen, Guy Smagghe, Tong-Xian Liu and Shun-Hua Gui
Insects 2025, 16(4), 407; https://doi.org/10.3390/insects16040407 - 12 Apr 2025
Viewed by 316
Abstract
The regulation of locomotor behavior is essential for insects to perform their life activities. The central nervous system plays a pivotal role in modulating physiological behaviors, particularly movement, with neuropeptides serving as key modulators of these processes. Among these, adipokinetic hormone (AKH) was [...] Read more.
The regulation of locomotor behavior is essential for insects to perform their life activities. The central nervous system plays a pivotal role in modulating physiological behaviors, particularly movement, with neuropeptides serving as key modulators of these processes. Among these, adipokinetic hormone (AKH) was originally identified in insects as a neurohormone involved in lipid mobilization. This study investigates the functional role of AKHs (AKH1 and AKH2) and their receptor (AKHR) in regulating locomotion in the red flour beetle, Tribolium castaneum. Using functional calcium reporter assays, we demonstrated that AKHR is activated by two mature AKH peptides from T. castaneum, with half-maximal effective concentrations (EC50) falling within the nanomolar range. Gene expression analysis confirmed the presence of AKH1 and AKH2 transcripts in the brain, while AKHR expression was localized to the fat body and carcass. The silencing of AKHs or AKHR through RNA interference resulted in a significant reduction in both movement distance and duration. Collectively, these findings highlight the regulatory influence of AKH/AKHR signaling in locomotor activity in T. castaneum, thereby advancing our understanding of the molecular mechanisms underlying locomotor control in this economically important insect species. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

15 pages, 1073 KiB  
Article
Physiological and Biochemical Mechanisms of Aoria nigripes (Coleoptera, Chrysomelidae) Adaption to Flavonoid-Rich Plant Nekemias grossedentata
by Zhengwen Yu, Chenju Yang, Lian Xie, Feng Yang and Yuyu Yuan
Insects 2025, 16(4), 399; https://doi.org/10.3390/insects16040399 - 10 Apr 2025
Viewed by 263
Abstract
This study aimed to explore the physiological and biochemical mechanisms of the interaction between N. grossedentata and A. nigripes. First, specimens were categorized into low- (6.16% ± 0.66%), medium- (9.23% ± 1.19%), and high-content groups (21.23% ± 1.23%) based on the initial [...] Read more.
This study aimed to explore the physiological and biochemical mechanisms of the interaction between N. grossedentata and A. nigripes. First, specimens were categorized into low- (6.16% ± 0.66%), medium- (9.23% ± 1.19%), and high-content groups (21.23% ± 1.23%) based on the initial dihydromyricetin concentration in N. grossedentata. Subsequently, we assessed the variations in total flavonoids, dihydromyricetin, myricitrin, and myricetin in plants 24, 48, and 72 h post-feeding. Concurrently, we analyzed the impact of plant leaf consumption on the detoxifying [glutathione S-transferase (GST), carboxylesterase (CarE), acetylcholinesterase (AchE), and cytochrome P450 (CYP450)] and protective enzyme [superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT)] activities in A. nigripes, along with its metabolic processes. The results demonstrated that N. grossedentata enhanced its secondary metabolites, particularly dihydromyricetin, as a defensive response to insect-induced stress. A. nigripes utilized its detoxification and protective enzyme systems to mitigate the effects of high flavonoid levels in the host plant, with particular emphasis on the roles of detoxification enzymes (GST, AchE, CYP450, and CarE) in detoxification metabolism, which showed significant correlation (p < 0.01) with dihydromyricetin, exhibiting correlation coefficients of 0.689, 0.633, 0.579, and 0.561, respectively. Additionally, key flavonoids in N. grossedentata were observed to accumulate with different degrees during digestion and metabolism in insects. These findings lay a theoretical foundation for the further exploration of the molecular mechanisms of A. nigripes adaptation to a flavonoid-rich plant N. grossedentata and inform the development of novel pest control strategies and the selection of resistant plant varieties. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

13 pages, 6442 KiB  
Article
MPF Regulates Oocyte and Embryo Development During Parthenogenesis Induction in Silkworm, Bombyx mori
by Chenkai Ma, Fang Xu, Chengjie Hu, Chunguang Cui, Xin Du, Jine Chen, Linbao Zhu, Shaofang Yu, Xingjian He, Wei Yu, Yongqiang Wang and Xia Xu
Insects 2025, 16(4), 361; https://doi.org/10.3390/insects16040361 - 31 Mar 2025
Viewed by 329
Abstract
In most species, oocytes are arrested at the prophase or metaphase of meiosis I and require sperm-derived or external stimuli to resume meiosis. Maturation-promoting factor (MPF) is an oocyte maturation factor composing the catalytic subunit Cdc2 and the regulatory subunit CycB that can [...] Read more.
In most species, oocytes are arrested at the prophase or metaphase of meiosis I and require sperm-derived or external stimuli to resume meiosis. Maturation-promoting factor (MPF) is an oocyte maturation factor composing the catalytic subunit Cdc2 and the regulatory subunit CycB that can restart stalled meiosis. In this study, we demonstrated that MPF activity affected parthenogenesis induction in the model lepidopteran insect Bombyx mori using activator and inhibitor interference. We found that the upregulation of MPF activity significantly increased the parthenogenesis induction rate, whereas downregulation significantly reduced it. Furthermore, the inhibition of MPF activity also led to a delay in embryonic development. Given its evolutionary conservation, MPF emerges as a potential universal target for manipulating reproductive outcomes, offering broad applications in genetics and selective breeding. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

25 pages, 4026 KiB  
Article
Immune-Related Genes in the Honey Bee Mite Varroa destructor (Acarina, Parasitidae)
by Alfonso Cacace, Giovanna De Leva, Ilaria Di Lelio and Andrea Becchimanzi
Insects 2025, 16(4), 356; https://doi.org/10.3390/insects16040356 - 28 Mar 2025
Viewed by 408
Abstract
Despite its ecological and economic importance, many aspects of Varroa destructor’s biology remain poorly understood, particularly its defense mechanisms against pathogens. The limited knowledge of Varroa’s immunity has hindered the development of RNA interference (RNAi)-based strategies targeting immune-related genes. In this study, [...] Read more.
Despite its ecological and economic importance, many aspects of Varroa destructor’s biology remain poorly understood, particularly its defense mechanisms against pathogens. The limited knowledge of Varroa’s immunity has hindered the development of RNA interference (RNAi)-based strategies targeting immune-related genes. In this study, we investigated the immune gene repertoire of V. destructor by querying its NCBI nr protein database and comparing it to model species of ticks (Ixodes scapularis) and mites (Galendromus occidentalis and Tetranychus urticae). Transcription of candidate immune genes was confirmed by analyzing a de novo assembled transcriptome of V. destructor. Our findings reveal that V. destructor shares key immunological traits with ticks, including lysozymes, chitinases, and thioester-containing proteins (TEPs), but also shares the absence of transmembrane peptidoglycan recognition proteins (PGRPs), Gram-negative binding proteins, and several lectin families involved in pathogen recognition. Additionally, Varroa mites, like ticks, lack homologs of crucial immune signaling components, such as the unpaired ligand (JAK/STAT), Eiger (JNK), and multiple elements of the IMD pathway. They also do not encode canonical antimicrobial peptides (AMPs) like defensins but possess putative homologs of ctenidins, AMPs previously identified in spiders and ticks, which may be adopted as a novel genetic readout for immune response in mites. Our findings lay the groundwork for future functional studies on mite immunity and open new avenues for RNAi-based biocontrol strategies targeting immune pathways to enhance Varroa management. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

20 pages, 5835 KiB  
Article
The Early Sex-Specific Expression of the Fruitless Gene in the Asian Tiger Mosquito Aedes albopictus (Skuse) and Its Functional Conservation in Male Courtship
by Marianna Varone, Paola Di Lillo, Katerina Nikolouli, Ayca Eda Özel, Francesca Lucibelli, Gennaro Volpe, Sarah Maria Mazzucchiello, Angela Carfora, Serena Aceto, Giuseppe Saccone, Kostas Bourtzis and Marco Salvemini
Insects 2025, 16(3), 280; https://doi.org/10.3390/insects16030280 - 7 Mar 2025
Viewed by 1038
Abstract
The Asian tiger mosquito, Aedes albopictus, is an invasive species and a vector for several significant human pathogens. Gaining a deeper understanding of its reproductive biology offers valuable insights into its evolutionary success and may inform the development of sustainable strategies to [...] Read more.
The Asian tiger mosquito, Aedes albopictus, is an invasive species and a vector for several significant human pathogens. Gaining a deeper understanding of its reproductive biology offers valuable insights into its evolutionary success and may inform the development of sustainable strategies to control its spread. This study presents a comprehensive structural and functional characterization of the fruitless gene in Ae. albopictus (Aalfru), a pivotal regulator of sexual behavior in insects. Through in silico analysis combined with molecular and functional genetics approaches, we identified a high degree of conservation in the fru gene structure and its regulation via sex-specific alternative splicing. Differently from Drosophila, Aedes aegypti, and other dipteran fruitless orthologs, Aalfru sex-specific regulation starts in 1-day-old embryos, rather than the late larval stage. Functional analysis using embryonic RNA interference (RNAi) demonstrated that, Ae. albopictus males with transiently disrupted fru expression at the embryonic stage showed significant deficits in adult mating behavior and failed to produce viable progeny. Our findings elucidate the Aalfru gene’s molecular organization, developmental regulation, and critical role in courtship behavior, highlighting its importance in male sexual behavior and reproductive success in Ae. albopictus. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

18 pages, 2945 KiB  
Article
Ultrastructure and Transcriptome Analysis of the Larval Integument in Solitary and Gregarious Phases of Mythimna separata
by Lingling Li, Wenmeng Li, Jing Liao, Junhong Fu, Changgeng Dai, Yang Hu and Hongbo Li
Insects 2025, 16(2), 190; https://doi.org/10.3390/insects16020190 - 10 Feb 2025
Viewed by 857
Abstract
Mythimna separata larvae exhibit both solitary and gregarious phases under low and high population density, respectively; furthermore, differences in morphology, behavior and physiology have been observed in the two phases. The integument plays an essential role in the fitness, general metabolism, communication, and [...] Read more.
Mythimna separata larvae exhibit both solitary and gregarious phases under low and high population density, respectively; furthermore, differences in morphology, behavior and physiology have been observed in the two phases. The integument plays an essential role in the fitness, general metabolism, communication, and survival of insects; however, differences in the integument ultrastructure and gene expression in the solitary and gregarious phases are largely unknown. In this study, the integument ultrastructure of larvae in the solitary and gregarious phases was compared, and transcriptome analysis was conducted to identify which genes were differentially expressed in the two phases. The results showed that the gregarious larvae had thicker integuments and more polygonal particles on the cuticle surface than solitary larvae. Using the Illumina HiSeq™ sequencing platform, 2774 differentially expressed genes (DEGs) were generated. Among these, many transcripts were identified with roles in the synthesis of fatty acids; structural components of the integument and the insecticide detoxification were differentially expressed in the integument of the two larval phases. qRT-PCR was used to validate expression patterns of the selected transcripts. This study provides a valuable resource for understanding the molecular basis of behavioral and physiological differences in the two phases of M. separata. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

18 pages, 2414 KiB  
Article
Adult Diel Locomotor Behaviour in the Agricultural Pest Plutella xylostella Reflects Temperature-Driven and Light-Repressed Regulation Rather than Coupling to Circadian Clock Gene Rhythms
by Connor J. Tyler, Shubhangi Mahajan, Lena Smith, Haruko Okamoto and Herman Wijnen
Insects 2025, 16(2), 182; https://doi.org/10.3390/insects16020182 - 8 Feb 2025
Viewed by 745
Abstract
The diamondback moth, Plutella xylostella, is arguably the most economically impactful and widespread lepidopteran pest. Though the larval P. xylostella life stage is responsible for most of this cost through the consumption of crops, it is the adult form that spreads the pest [...] Read more.
The diamondback moth, Plutella xylostella, is arguably the most economically impactful and widespread lepidopteran pest. Though the larval P. xylostella life stage is responsible for most of this cost through the consumption of crops, it is the adult form that spreads the pest to fresh crops all around the world, seeking them out in a seasonally expanding range. It is therefore important to understand the activity rhythms of adult P. xylostella in response to environmental cues such as light and temperature. We analysed diel rhythms in both adult clock gene expression and locomotor behaviour for the ROTH P. xylostella strain. Real-time quantitative PCR analyses of P. xylostella demonstrated diel rhythms for transcripts of the clock genes period and timeless under both entrained and free-running conditions indicating the presence of a functional daily timekeeping mechanism. However, adult locomotor rhythms exhibited temperature-driven and light-repressed regulation rather than circadian control. Thus, our analyses show a lack of coupling between the P. xylostella circadian clock and adult locomotor behaviour, which may be relevant in predicting the activity patterns of this agricultural pest. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Graphical abstract

12 pages, 3141 KiB  
Article
Transcriptomic Characterization of Phototransduction Genes of the Asian Citrus Psyllid Diaphorina citri Kuwayama
by Shao-Ping Chen, Xue-Mei Chu, Mei-Xiang Chi, Jian Zhao and Rong-Zhou Qiu
Insects 2024, 15(12), 966; https://doi.org/10.3390/insects15120966 - 4 Dec 2024
Viewed by 1070
Abstract
Opsin plays a regulatory role in phototaxis of Diaphorina citri, functioning as the initial station in the phototransduction cascade. Our study aimed to explore the D. citri phototransduction pathway to identify elicitors that may enhance D. citri phototaxis in the future. The [...] Read more.
Opsin plays a regulatory role in phototaxis of Diaphorina citri, functioning as the initial station in the phototransduction cascade. Our study aimed to explore the D. citri phototransduction pathway to identify elicitors that may enhance D. citri phototaxis in the future. The RNAi technique was employed to inhibit LW-opsin gene expression, followed by RNA-Seq analysis to identify phototransduction genes. Finally, RT-qPCR was performed to validate whether genes in the phototransduction pathway were affected by the inhibition of LW-opsin expression. A total of 87 genes were identified within the transcriptome as involved in phototransduction based on KEGG functional annotation. Of these, 71 genes were identified as enriched in the phototransduction-fly pathway. These genes encode key proteins in this process, including Gqα, Gqβ, Gqγ, phospholipase C β (PLCβ), the cation channel transient receptor potential (TRP), and TRP-like (TRPL), among others. Moreover, the LOC103513214 (Gqβ) and LOC103518375 (ninaC) genes exhibited reduced expression when LW-opsin gene expression was suppressed. Our results provide a basis for further investigation of phototransduction in D. citri. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

13 pages, 2370 KiB  
Article
Screening and Validation of Stable Reference Genes for qRT-PCR Analysis in Epicauta gorhami (Coleoptera: Meloidae)
by Guofeng Yang, Xuetao Yu, Yan Zhang, Jinhua Luo, Xiaofei Li, Li Zhu, Huanhuan Zhang, Lin Jin, Gang Wu, Xiaohong Yan and Chenhui Shen
Insects 2024, 15(12), 942; https://doi.org/10.3390/insects15120942 - 29 Nov 2024
Viewed by 707
Abstract
Epicauta gorhami is a hypermetamorphic insect that mainly forage soybeans during the adult stage. However, the lack of appropriate references hinders our studying of the gene function in E. gorhami. In this study, referring to five computational tools (Ct value, geNorm, NormFinder, [...] Read more.
Epicauta gorhami is a hypermetamorphic insect that mainly forage soybeans during the adult stage. However, the lack of appropriate references hinders our studying of the gene function in E. gorhami. In this study, referring to five computational tools (Ct value, geNorm, NormFinder, BestKeeper and RefFinder), the stability of 10 housekeeping genes (GAPDH, ACT, RPL4, RPL27, α-TUB, RPS18, EF1α, RPS28, RPL13 and SOD) was assessed by qRT-PCR under three different conditions (adult ages, tissues/organs and temperatures). The findings suggested that SOD and RPS18 were the most ideal references for examine gene transcripts among diverse adult ages and at various temperatures; a pair of RPS18 and RPS28 was the most reliable genes to assess gene expressions in diverse adult tissues. Finally, the relative expression levels of EgUAP were computed after normalization RPS18 and RPS28 with across diverse adult tissues. As expected, EgUAP expression was abundant in the foregut, trachea and antenna and scarce in the midgut, hindgut and epidermis. These findings will lay a solid foundation for analyzing the gene expression of E. gorhami. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

17 pages, 2456 KiB  
Article
RNAi of Neuropeptide CCHamide-1 and Its Receptor Indicates Role in Feeding Behavior in the Pea Aphid, Acyrthosiphon pisum
by Sohaib Shahid, Muhammad Bilal Amir, Tian-Bo Ding, Tong-Xian Liu, Guy Smagghe and Yan Shi
Insects 2024, 15(12), 939; https://doi.org/10.3390/insects15120939 - 28 Nov 2024
Viewed by 1231
Abstract
Neuropeptide CCHamide-1 (abbreviated as CCHa1) is a recently discovered peptide that is present in many arthropods and is the ligand of the CCHa1R, a member of the G protein-coupled receptors (GPCRs) superfamily, which plays a regulatory role in diverse physiological processes [...] Read more.
Neuropeptide CCHamide-1 (abbreviated as CCHa1) is a recently discovered peptide that is present in many arthropods and is the ligand of the CCHa1R, a member of the G protein-coupled receptors (GPCRs) superfamily, which plays a regulatory role in diverse physiological processes such as feeding, circadian rhythm, insulin production, lipid metabolism, growth, and reproduction. However, the function of this gene in aphids is still unknown. Here, we characterized and determined the potential role of CCHa1/CCHa1R signaling in the pea aphid, Acyrthosiphon pisum, which is a notorious pest in agriculture. The docking analysis revealed that the CCHa1 peptide binds to its receptor CCHa1R through specific amino acid residues, which are critical for maintaining the structural and functional integrity of the peptide–receptor complex. Quantitative real-time reverse transcription-PCR (qRT-PCR) revealed the expression levels of CCHa1/CCHa1R transcripts in different development stages and different tissues, indicating that the CCHa1 expression was high in the first nymphal instar compared to the upcoming nymphal instars and adults, and was predominantly high in the brain. The CCHa1/CCHa1R transcript levels were significantly upregulated in starved aphids compared to fed aphids. Moreover, RNAi knockdown by the injection of dsRNA-CCHa1 and dsRNA-CCHa1R significantly reduced the corresponding expression of the target gene and reduced their food intake in adult aphids, as revealed by the electrical penetration graph results. CCHa1/CCHa1R-silencing also reduced the reproduction, but not the survival, in A. pisum. Our data demonstrated that CCHa1/CCHa1R play a role in the regulation of feeding in A. pisum, suggesting a role of the CCHa1 signaling pathway in the aphids relating to their nutritional status. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Graphical abstract

15 pages, 8952 KiB  
Article
Functional Analysis of CPSF30 in Nilaparvata lugens Using RNA Interference Reveals Its Essential Role in Development and Survival
by Shengli Jing, Jing Yang, Yali Liu, Feifei Wang, Fang Zheng, Aobo Ren, Bingbing Yu, Yue Zhao, Bing Jia, Ruixian Chen, Bin Yu, Qingsong Liu and Jingang Xu
Insects 2024, 15(11), 860; https://doi.org/10.3390/insects15110860 - 3 Nov 2024
Viewed by 1946
Abstract
The brown planthopper (Nilaparvata lugens) is a major pest threatening global rice production, significantly reducing yields annually. As N. lugens increasingly develops resistance to conventional control methods, such as chemical pesticides, there is an urgent need for innovative and sustainable pest [...] Read more.
The brown planthopper (Nilaparvata lugens) is a major pest threatening global rice production, significantly reducing yields annually. As N. lugens increasingly develops resistance to conventional control methods, such as chemical pesticides, there is an urgent need for innovative and sustainable pest management strategies. Cleavage and Polyadenylation Specificity Factor 30 (CPSF30) is a key protein involved in mRNA 3′ end processing, yet its function in N. lugens remains poorly understood. This study aims to elucidate the role of CPSF30 in the growth and development of N. lugens and evaluate its potential as a target for RNA interference (RNAi)-based pest control strategies. We cloned and characterized the cDNA sequence of NlCPSF30, which encodes a protein of 341 amino acids containing five CCCH zinc-finger domains and two CCHC zinc-knuckle domains. Sequence alignment revealed that NlCPSF30 is highly conserved among insect species, particularly in the zinc-finger domains essential for RNA binding and processing. Phylogenetic analysis showed that NlCPSF30 is closely related to CPSF30 proteins from other hemipteran species. Expression analysis indicated that NlCPSF30 is most highly expressed in the fat body and during the adult stage, with significantly higher expression in females than in males. RNAi-mediated silencing of NlCPSF30 in third-instar nymphs resulted in severe phenotypic abnormalities, including disrupted molting and increased mortality following injection of double-stranded RNA (dsRNA) targeting NlCPSF30. Moreover, it influenced the expression of genes associated with hormone regulation, namely NlHry, NlE93, and NlKr-h1. These results suggest that NlCPSF30 is integral to critical physiological processes, with its disruption leading to increased mortality. Our findings identify NlCPSF30 as an essential gene for N. lugens’ survival and a promising target for RNAi-based pest management strategies. This study provides a valuable molecular target and theoretical insights for developing RNAi-based control methods against N. lugens. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 619 KiB  
Review
Sex Chromosome Dosage Compensation in Insects
by Xingcheng Xie, Yakun Zhang, Heyuan Peng and Zhongyuan Deng
Insects 2025, 16(2), 160; https://doi.org/10.3390/insects16020160 - 4 Feb 2025
Viewed by 1152
Abstract
Dosage compensation (DC) is of crucial importance in balancing the sex-linked gene expression between males and females. It serves to guarantee that the proteins or other enzymatic products encoded by the sex chromosome exhibit quantitative parity between the two genders. During the evolutionary [...] Read more.
Dosage compensation (DC) is of crucial importance in balancing the sex-linked gene expression between males and females. It serves to guarantee that the proteins or other enzymatic products encoded by the sex chromosome exhibit quantitative parity between the two genders. During the evolutionary process of achieving dose compensation, insects have developed a wide variety of mechanisms. There exist two primary modes of dosage compensation mechanisms, including the up-regulation of heterogametic sex chromosomes in the heterogamety and down-regulation of homogametic sex chromosomes in the homogamety. Although extensive investigations have been conducted on dosage compensation in model insects, many questions still remain unresolved. Meanwhile, research on non-model insects is attracting increasing attention. This paper systematically summarizes the current advances in the field of insect dosage compensation with respect to its types and mechanisms. The principal insects involved in this study include the Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and other lepidopteran insects. This paper analyzes the controversial issues about insect dosage compensation and also provides prospects for future research. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

Back to TopTop