Development of an Experimental Method Using a Portable Photosynthesis-Monitoring System to Measure Respiration Rates in Small-Sized Insects
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Sample Collection from Various Developmental Stages and Treatments
2.3. Measured Respiration Rates
2.4. RT-qPCR
2.5. RNA Interference Assay
2.6. Statistical Analyses
3. Results
3.1. Measurement of Respiration Rates in Different Insects, Using a Portable Photosynthesis-Monitoring System
3.2. Measurement of Respiration Rates of Ac. pisum Under Various Treatments, Using a Portable Photosynthesis-Monitoring System
3.3. Measurement of Respiration Rates of Ac. pisum Under the Silencing of a Key Mitochondrial Protein-Coding Genes, Using a Portable Photosynthesis-Monitoring System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westneat, M.W.; Betz, O.; Blob, R.W.; Fezzaa, K.; Cooper, W.J.; Lee, W.K. Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 2003, 299, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Contreras, H.L.; Bradley, T.J. Metabolic rate controls respiratory pattern in insects. J. Exp. Biol. 2009, 212, 424–428. [Google Scholar] [CrossRef]
- Harrison, J.F.; Greenlee, K.J.; Verberk, W.C.E.P. Functional hypoxia in insects: Definition, assessment, and consequences for physiology, ecology, and evolution. Annu. Rev. Entomol. 2018, 63, 303–325. [Google Scholar] [CrossRef] [PubMed]
- Hetz, S.K.; Bradley, T.J. Insects breathe discontinuously to avoid oxygen toxicity. Nature 2005, 433, 516–519. [Google Scholar] [CrossRef]
- Lalouette, L.; Williams, C.M.; Hervant, F.; Sinclair, B.J.; Renault, D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2011, 158, 229–234. [Google Scholar] [CrossRef]
- Contreras, H.L.; Bradley, T.J. Transitions in insect respiratory patterns are controlled by changes in metabolic rate. J. Insect Physiol. 2010, 56, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Clissold, F.J.; Simpson, S.J. Temperature, food quality and life history traits of herbivorous insects. Curr. Opin. Insect Sci. 2015, 11, 63–70. [Google Scholar] [CrossRef]
- Verberk, W.C.E.P.; Bilton, D.T. Respiratory control in aquatic insects dictates their vulnerability to global warming. Biol. Lett. 2013, 9, 20130473. [Google Scholar] [CrossRef]
- Yuan, G.-Q.; Chen, M.-Q.; Hou, Q.-L.; Tang, P.-A.; Chen, E.-H. Identification and functional analysis of mitochondrial protein-coding genes associated with the adaptability to cold stress of the rusty grain beetle Cryptolestes ferrugineus. J. Stored Prod. Res. 2025, 112, 102626. [Google Scholar] [CrossRef]
- Nayak, M.K.; Daglish, G.J.; Phillips, T.W.; Ebert, P.R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annu. Rev. Entomol. 2020, 65, 333–350. [Google Scholar] [CrossRef]
- Jiang, S.-D.; Wang, L.; Wang, L.; Sun, J.; Wang, J.J.; Wei, D.D. Mitochondrial coding genes mediate insecticide tolerance in the oriental fruit fly, Bactrocera dorsalis (Hendel). Pest. Biochem. Physiol. 2024, 199, 105763. [Google Scholar] [CrossRef] [PubMed]
- Brügger, B.P.; Martínez, L.C.; Plata-Rueda, A.; Castro, B.M.d.C.e.; Soares, M.A.; Wilcken, C.F.; Carvalho, A.G.; Serrão, J.E.; Zanuncio, J.C. Bioactivity of the Cymbopogon citratus (Poaceae) essential oil and its terpenoid constituents on the predatory bug, Podisus nigrispinus (Heteroptera: Pentatomidae). Sci. Rep. 2019, 9, 8358. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Martínez, L.C.; Santos, M.H.D.; Fernandes, F.L.; Wilcken, C.F.; Soares, M.A.; Serrão, J.E.; Zanuncio, J.C. Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Sci. Rep. 2017, 7, 46406. [Google Scholar] [CrossRef]
- Sousa, A.H.; Faroni, L.R.D.A.; Guedes, R.N.C.; Tótola, M.R.; Urruchi, W.I. Ozone as a management alternative against phosphine-resistant insect pests of stored products. J. Stored Prod. Res. 2008, 44, 379–385. [Google Scholar] [CrossRef]
- Jiang, T.; Ma, L.; Liu, X.-Y.; Xiao, H.-J.; Zhang, W.-N. Effects of starvation on respiratory metabolism and energy metabolism in the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J. Insect Physiol. 2019, 119, 103951. [Google Scholar] [CrossRef] [PubMed]
- Teulier, L.; Weber, J.M.; Crevier, J.; Darveau, C.A. Proline as a fuel for insect flight: Enhancing carbohydrate oxidation in hymenopterans. Proc. R. Soc. B 2016, 283, 20160333. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Martínez, L.C.; Costa, N.C.R.; Zanuncio, J.C.; de Sena Fernandes, M.E.; Serrão, J.E.; Guedes, R.N.C.; Fernandes, F.L. Chlorantraniliprole–mediated effects on survival, walking abilities, and respiration in the coffee berry borer, Hypothenemus hampei. Ecotoxicol. Environ. Saf. 2019, 172, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Liu, Y.; Liu, Y.; Dai, C.; Zhang, Y.; Zhou, F.; Zhu, Y. Salicylic acid modulates the osmotic system and photosynthesis rate to enhance the drought tolerance of Toona ciliata. Plants 2023, 12, 4187. [Google Scholar] [CrossRef]
- Shi, S.; Li, H.; Wang, X.; Wang, Z.; Xu, J.; He, X.; Yang, Z.a. Greater biomass production under elevated CO2 is attributed to physiological optimality, trade-offs in nutrient allocation, and oxidative defense in drought-stressed mulberry. Antioxidants 2025, 14, 383. [Google Scholar] [CrossRef]
- Yu, M.; Fan, Y.; Li, X.; Chen, X.; Yu, S.; Wei, S.; Li, S.; Chang, W.; Qu, C.; Li, J.; et al. LESION MIMIC MUTANT 1 confers basal resistance to Sclerotinia sclerotiorum in rapeseed via a salicylic aciddependent pathway. J. Exp. Bot. 2023, 74, 5620–5634. [Google Scholar] [CrossRef]
- Zveushe, O.K.; Sajid, S.; Dong, F.; Han, Y.; Zeng, F.; Geng, Y.; Shen, S.; Xiang, Y.; Kang, Q.; Zhang, Y.; et al. Different sex combinations of Populus cathayana affect soil respiration and tea litter decomposition by influencing plant growth and soil functional microbial diversity. Plant Soil 2023, 490, 631–650. [Google Scholar] [CrossRef]
- Wang, S.; Wang, T.; Gao, L.; Du, H.; Wang, D.; Ma, M.; Rennenberg, H. Iron addition promotes mercury removal from soil by Robinia pseudoacacia-rhizobia symbiosis. Tree Physiol. 2025, 45, tpae166. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, X.; Chen, M.; Xu, X.; Zhang, W.; Chi, H.; Shao, P.; Tang, F.; Gong, T.; Guo, M.; et al. Excellent canopy structure in soybeans can improve their photosynthetic performance and increase yield. Agriculture 2024, 14, 1783. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, F.; Li, H.; Su, Y.; Wu, Y. Stable nitrogen isotopes as an effective tool for estimating the nitrogen demand of Broussonetia papyrifera (L.) vent seedlings under variable nitrate concentrations. Agronomy 2023, 13, 1663. [Google Scholar] [CrossRef]
- Kayoumu, M.; Iqbal, A.; Muhammad, N.; Li, X.; Li, L.; Wang, X.; Gui, H.; Qi, Q.; Ruan, S.; Guo, R.; et al. Phosphorus availability affects the photosynthesis and antioxidant system of contrasting Low-P-Tolerant cotton genotypes. Antioxidants 2023, 12, 466. [Google Scholar] [CrossRef]
- Li, Y.; Ruan, S.; Li, D.; Liu, J.; Hu, Q.; Dian, Y.; Yu, Z.; Zhou, J. Photosynthetic difference of six poplar genotypes and estimation of photosynthetic capacities based on leaf hyperspectral reflectance. For. Res. 2024, 4, e037. [Google Scholar] [CrossRef]
- Chieppa, J.; Brown, T.; Giresi, P.; Juenger, T.E.; Resco de Dios, V.; Tissue, D.T.; Aspinwall, M.J. Climate and stomatal traits drive covariation in nighttime stomatal conductance and daytime gas exchange rates in a widespread C4 grass. New Phytol. 2021, 229, 2020–2034. [Google Scholar] [CrossRef]
- Feng, Q.; Luo, Y.; Liang, M.; Cao, Y.; Wang, L.; Liu, C.; Zhang, X.; Ren, L.; Wang, Y.; Wang, D.; et al. Rhizobacteria protective hydrogel to promote plant growth and adaption to acidic soil. Nat. Commun. 2025, 16, 1684. [Google Scholar] [CrossRef]
- Riches, M.; Lee, D.; Farmer, D.K. Simultaneous leaf-level measurement of trace gas emissions and photosynthesis with a portable photosynthesis system. Atmos. Meas. Tech. 2020, 13, 4123–4139. [Google Scholar] [CrossRef]
- Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef]
- Despabiladeras, J.B.; Bautista, M.A.M. Complete mitochondrial genome of the eggplant fruit and Shoot Borer, Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), and comparison with other pyraloid moths. Insects 2024, 15, 220. [Google Scholar] [CrossRef] [PubMed]
- Perkin, L.C.; Smith, T.P.L.; Oppert, B. Variants in the mitochondrial genome sequence of Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrycidae). Insects 2021, 12, 387. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, S.; Wu, X.; Wei, Q.; Shang, Y.; Sun, G.; Mei, X.; Dong, Y.; Sha, W.; Zhang, H. High-altitude adaptation in vertebrates as revealed by mitochondrial genome analyses. Ecol. Evol. 2021, 11, 15077–15084. [Google Scholar] [CrossRef] [PubMed]
- Francoso, E.; Zuntini, A.R.; Ricardo, P.C.; Santos, P.K.F.; Araujo, N.d.S.; Silva, J.P.N.; Goncalves, L.T.; Brito, R.; Gloag, R.; Taylor, B.A.; et al. Rapid evolution, rearrangements and whole mitogenome duplication in the Australian stingless bees Tetragonula (Hymenoptera: Apidae): A steppingstone towards understanding mitochondrial function and evolution. Int. J. Biol. Macromol. 2023, 242, 124568. [Google Scholar] [CrossRef]
- Guan, J.-Y.; Zhang, Z.-Y.; Cao, Y.-R.; Xu, X.-D.; Storey, K.B.; Yu, D.-N.; Zhang, J.-Y. The complete mitochondrial genome of Choroterpes (Euthralus) yixingensis (Ephemeroptera: Leptophlebiidae) and its mitochondrial protein-coding gene expression under imidacloprid stress. Gene 2021, 800, 145833. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Guan, J.-Y.; Cao, Y.-R.; Dai, X.-Y.; Storey, K.B.; Yu, D.-N.; Zhang, J.-Y. Mitogenome analysis of four Lamiinae species (Coleoptera: Cerambycidae) and gene expression responses by Monochamus alternatus when infected with the parasitic nematode, Bursaphelenchus mucronatus. Insects 2021, 12, 453. [Google Scholar] [CrossRef]
- Chen, E.-H.; Duan, J.-Y.; Song, W.; Wang, D.-X.; Tang, P.-A. RNA-seq analysis reveals mitochondrial and cuticular protein genes are associated with phosphine resistance in the rusty grain beetle (Coleoptera: Laemophloeidae). J. Econ. Entomol. 2021, 114, 440–453. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.-H.; Wei, D.; Wei, D.-D.; Yuan, G.-R.; Wang, J.-J. The effect of dietary restriction on longevity, fecundity, and antioxidant responses in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). J. Insect Physiol. 2013, 59, 1008–1016. [Google Scholar] [CrossRef]
- Qiang, W.X.; Zhong, L.C.; Tian, X.Y.; Zhou, S. Effects of sublethal dosage of imidacloprid, abamectin and beta-cypermethrin on the development and reproduction of green of the morph of pea aphid (Acyrthosiphon pisum). Acta Prataculturae Sin. 2014, 23, 279–286. [Google Scholar]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef]
- Yang, C.; Pan, H.; Liu, Y.; Zhou, X. Selection of reference genes for expression analysis using quantitative real-time PCR in the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera, Aphidiae). PLoS ONE 2014, 9, e110454. [Google Scholar] [CrossRef] [PubMed]
- Lebenzon, J.E.; Overgaard, J.; Jørgensen, L.B. Chilled, starved or frozen: Insect mitochondrial adaptations to overcome the cold. Curr. Opin. Insect Sci. 2023, 58, 101076. [Google Scholar] [CrossRef] [PubMed]
- Haddi, K.; Mendes, M.V.; Barcellos, M.S.; Lino-Neto, J.; Freitas, H.L.; Guedes, R.N.C.; Oliveira, E.E. Sexual success after stress? Imidacloprid-induced hormesis in males of the neotropical stink bug Euschistus heros. PLoS ONE 2016, 11, e0156616. [Google Scholar] [CrossRef] [PubMed]
- Plata-Rueda, A.; Rolim, G.D.S.; Wilcken, C.F.; Zanuncio, J.C.; Serrão, J.E.; Martínez, L.C. Acute toxicity and sublethal effects of lemongrass essential oil and their components against the Granary weevil, Sitophilus granarius. Insects 2020, 11, 379. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Martínez, L.C.; Rolim, G.d.S.; Coelho, R.P.; Santos, M.H.; Tavares, W.d.S.; Zanuncio, J.C.; Serrão, J.E. Insecticidal and repellent activities of Cymbopogon citratus (Poaceae) essential oil and its terpenoids (citral and geranyl acetate) against Ulomoides dermestoides. Crop Prot. 2020, 137, 105299. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Campos, J.M.; da Silva Rolim, G.; Martínez, L.C.; Dos Santos, M.H.; Fernandes, F.L.; Serrão, J.E.; Zanuncio, J.C. Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granarius. Ecotoxicol. Environ. Saf. 2018, 156, 263–270. [Google Scholar] [CrossRef]
- Fiaz, M.; Martínez, L.C.; Costa, M.d.S.; Cossolin, J.F.S.; Plata-Rueda, A.; Gonçalves, W.G.; Sant’Ana, A.E.G.; Zanuncio, J.C.; Serrão, J.E. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicol. Environ. Saf. 2018, 156, 1–8. [Google Scholar] [CrossRef]
- Fiaz, M.; Martínez, L.C.; Plata-Rueda, A.; Gonçalves, W.G.; Shareef, M.; Zanuncio, J.C.; Serrão, J.E. Toxicological and morphological effects of tebufenozide on Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae. Chemosphere 2018, 212, 337–345. [Google Scholar] [CrossRef]
- Lebenzon, J.E.; Denezis, P.W.; Mohammad, L.; Mathers, K.E.; Turnbull, K.F.; Staples, J.F.; Sinclair, B.J. Reversible mitophagy drives metabolic suppression in diapausing beetles. Proc. Natl. Acad. Sci. USA 2022, 119, e2201089119. [Google Scholar] [CrossRef]
- Ding, Y.-R.; Van, Z.-T.; Si, F.-L.; Li, X.-D.; Mao, Q.-M.; Asghar, S.; Chen, B. Mitochondrial genes associated with pyrethroid resistance revealed by mitochondrial genome and transcriptome analyses in the malaria vector Anopheles sinensis (Diptera: Culicidae). Pest Manag. Sci. 2020, 76, 769–778. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Y.; Wu, H.; Xu, N.; Ma, Z.; Zhang, C. Function of four mitochondrial genes in fumigation lethal mechanisms of Allyl Isothiocyanate against Sitophilus zeamais adults. Pest Biochem. Physiol. 2021, 179, 104947. [Google Scholar] [CrossRef] [PubMed]
- Steven, Z.; Jujiao, K.; Paul, E. Mitochondrial modulation of phosphine toxicity and resistance in Caenorhabditis elegans. Toxicol. Sci. 2008, 102, 179–186. [Google Scholar]
- Pimentel, M.A.G.; Faroni, L.R.D.A.; Tótola, M.R.; Guedes, R.N.C. Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Manag. Sci. 2007, 63, 876–881. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, B.-Y.; Xu, Q.-Q.; Liu, Y.-J.; Zhong, Y.-H.; Zhou, Y. Development of an Experimental Method Using a Portable Photosynthesis-Monitoring System to Measure Respiration Rates in Small-Sized Insects. Insects 2025, 16, 616. https://doi.org/10.3390/insects16060616
Ding B-Y, Xu Q-Q, Liu Y-J, Zhong Y-H, Zhou Y. Development of an Experimental Method Using a Portable Photosynthesis-Monitoring System to Measure Respiration Rates in Small-Sized Insects. Insects. 2025; 16(6):616. https://doi.org/10.3390/insects16060616
Chicago/Turabian StyleDing, Bi-Yue, Qin-Qin Xu, Yu-Jing Liu, Yu-Hong Zhong, and Yan Zhou. 2025. "Development of an Experimental Method Using a Portable Photosynthesis-Monitoring System to Measure Respiration Rates in Small-Sized Insects" Insects 16, no. 6: 616. https://doi.org/10.3390/insects16060616
APA StyleDing, B.-Y., Xu, Q.-Q., Liu, Y.-J., Zhong, Y.-H., & Zhou, Y. (2025). Development of an Experimental Method Using a Portable Photosynthesis-Monitoring System to Measure Respiration Rates in Small-Sized Insects. Insects, 16(6), 616. https://doi.org/10.3390/insects16060616