Special Issue "Editorial Board Members’ Collection Series in “Featuring Ligands and Their Applications in Coordination Chemistry”"

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Coordination Chemistry".

Deadline for manuscript submissions: closed (30 September 2023) | Viewed by 4053

Special Issue Editors

Department of Chemistry, Colorado State University, Fort Colllins, CO 80523, USA
Interests: vanadium; metals in medicine; drugs and biologically active compounds; lipid and lipid model interfaces; pharmaceutically active compounds; cancer; diabetes; tuberculosis; hydrophobic compounds; spectroscopy; transition metals; reverse micelles; chemistry in confined spaces
Special Issues, Collections and Topics in MDPI journals
Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior S/N, 15 C.P. 04510, Coyoacán, Ciudad de México, México
Interests: supramolecular chemistry; crystal engineering; medicinal chemistry; metallopharmaceuticals, green chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Ligands are at the core of both coordination and organometallic chemistry. They provide the proper environment, both steric and electronic, for metal centers to function either as a selective catalyst or as a highly efficient metallodrug—sometimes even by being part of the different processes where the whole complexes are involved, being not only spectators but assuming the non-innocent role of being a true protagonist in a given process. Thus, this Special Issue, although ultimately devoted to coordination and organometallic compounds and their applications, will cover both the design and participation of ligands in the performance of their corresponding complexes.

Prof. Dr. Debbie C. Crans
Prof. Dr. David Morales-Morales
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • design and synthesis of ligands
  • non-innocent ligands
  • privileged ligand platforms

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Novel Sulfone 2-Aminobenzimidazole Derivatives and Their Coordination Compounds: Contribution of the Ethyl and Phenyl Substituents on Non-Covalent Molecular Interactions; Biological Antiproliferative Activity
Inorganics 2023, 11(10), 392; https://doi.org/10.3390/inorganics11100392 (registering DOI) - 03 Oct 2023
Abstract
New sulfone 2-aminobenzimidazole derivatives were designed and synthesized. Their nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) compounds were obtained and fully characterized by spectroscopic and analytical techniques. Single crystal X-ray structural analysis was performed in order to study the relevant intra and inter non-covalent [...] Read more.
New sulfone 2-aminobenzimidazole derivatives were designed and synthesized. Their nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) compounds were obtained and fully characterized by spectroscopic and analytical techniques. Single crystal X-ray structural analysis was performed in order to study the relevant intra and inter non-covalent interactions, mainly H···π, lone pair···π, and π···π, highlighting the difference between the terminal ethyl and phenyl groups in such interactions. Dimeric and trimeric supramolecular syntons were found for some of these compounds. Additionally, their antiproliferative activity was investigated, finding that the copper(II) compounds with the sulfone phenyl derivative were the most active. Full article
Show Figures

Figure 1

Article
Coupling Pyrazine to Dithiocarbonates for Molybdopterin Model Ligands—Indispensable Tin
Inorganics 2023, 11(5), 188; https://doi.org/10.3390/inorganics11050188 - 26 Apr 2023
Viewed by 646
Abstract
Several synthetic cross-coupling procedures were (re-)evaluated for the tethering of pyrazine to dithiocarbonates. The resultant species constitute pro-ligands and can be converted by removal of the C=O moiety into ene-dithiolate ligand systems that model molybdopterin. The coupling of 2-iodopyrazine with the stannylated dithiocarbonate [...] Read more.
Several synthetic cross-coupling procedures were (re-)evaluated for the tethering of pyrazine to dithiocarbonates. The resultant species constitute pro-ligands and can be converted by removal of the C=O moiety into ene-dithiolate ligand systems that model molybdopterin. The coupling of 2-iodopyrazine with the stannylated dithiocarbonate units mediated by copper(I)-thiophene-2-carboxylate in stoichiometric equivalents proved to be the most efficient and the only reliable route to the targeted compounds. Single-crystal X-ray structural analysis confirmed the final structures of two pursued pyrazine-derived dithiocarbonates and those of two intermediates. Full article
Show Figures

Graphical abstract

Article
Structural, Spectroscopic, and Thermal Decomposition Features of [Carbonatotetraamminecobalt(III)] Iodide—Insight into the Simultaneous Solid-Phase Quasi-Intramolecular Redox Reactions
Inorganics 2023, 11(2), 68; https://doi.org/10.3390/inorganics11020068 - 01 Feb 2023
Cited by 1 | Viewed by 1491
Abstract
2-O,O′-Carbonatotetraamminecobalt(III)] iodide, or [Co(NH3)4CO3]I, named in this paper as compound 1, was prepared and characterized comprehensively with spectroscopic (IR, Raman and UV) and single-crystal X-ray diffraction methods. Compound 1 was orthorhombic, and isomorphous with the [...] Read more.
2-O,O′-Carbonatotetraamminecobalt(III)] iodide, or [Co(NH3)4CO3]I, named in this paper as compound 1, was prepared and characterized comprehensively with spectroscopic (IR, Raman and UV) and single-crystal X-ray diffraction methods. Compound 1 was orthorhombic, and isomorphous with the analogous bromide. The four ammonia ligands and the carbonate anion were coordinated to the central cobalt cation in a distorted octahedral geometry. The carbonate ion formed a four-membered symmetric planar chelate ring. The complex cations were bound to each other by N-H···O hydrogen bonds and formed zigzag sheets via an extended 2D hydrogen bond network. The complex cations and iodide ions were arranged into ion pairs and each cation bound its iodide pair through three hydrogen bonds. The thermal decomposition started with the oxidation of the iodide ion by CoIII in the solid phase resulting in [Co(NH3)4CO3] and I2. This intermediate CoII-complex in situ decomposed into Co3O4 and C-N bond containing intermediates. In inert atmosphere, CO or C-N bond containing compounds, and also, due to the in situ decomposition of CoCO3 intermediate, Co3O4 was formed. The quasi-intramolecular solid-phase redox reaction of [Co(NH3)4CO3] might have resulted in the formation of C-N bond containing compounds with substoichiometric release of ammonia and CO2 from compound 1. The C-N bond containing intermediates reduced Co3O4 into CoO and Co, whereas in oxygen-containing atmosphere, the end-product was Co3O4, even at 200 °C, and the endothermic ligand loss reaction coincided with the consecutive exothermic oxidation processes. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

Review
Copper-Coordinated Thiazoles and Benzothiazoles: A Perfect Alliance in the Search for Compounds with Antibacterial and Antifungal Activity
Inorganics 2023, 11(5), 185; https://doi.org/10.3390/inorganics11050185 - 25 Apr 2023
Cited by 2 | Viewed by 1376
Abstract
Throughout human history, bacteria and fungi have caused infections that are difficult to combat. For this reason, countless research groups have developed novel compounds to solve this problem. Thiazole and benzothiazole are present in different structures with interesting biological effects and are used [...] Read more.
Throughout human history, bacteria and fungi have caused infections that are difficult to combat. For this reason, countless research groups have developed novel compounds to solve this problem. Thiazole and benzothiazole are present in different structures with interesting biological effects and are used to develop new effective antimicrobial agents. Moreover, nitrogen atoms that are present in this heterocycle allow for coordination with various metals, forming metal complexes that enhance the biological activity of organic ligands that are often used as commercial drugs. This bibliographical review summarizes the copper complexes that use thiazole and benzothiazole as ligands and that report efficient antimicrobial activity against different bacteria and fungi. Full article
Show Figures

Graphical abstract

Back to TopTop