- Review
Targeting Ferroptosis in Nasopharyngeal Carcinoma: Mechanisms, Resistance, and Precision Therapeutic Opportunities
- Jaewang Lee and
- Jong-Lyel Roh
Nasopharyngeal carcinoma (NPC) is a head and neck malignancy strongly associated with Epstein–Barr virus (EBV) infection and characterized by high radiosensitivity but frequent therapy resistance. Despite advances in radiotherapy, chemotherapy, and immunotherapy, relapse and metastasis remain major challenges, underscoring the need for novel therapeutic approaches. This review aims to provide an integrated overview of the molecular mechanisms governing ferroptosis in NPC and to clarify how these pathways contribute to therapy resistance while revealing potential therapeutic vulnerabilities. Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a promising target in NPC. Core regulators include the system xCT–GSH–GPX4 antioxidant axis, iron metabolism, and lipid remodeling enzymes such as ACSL4, with epigenetic modifiers (METTL3, IGF2BP2, HOXA9) and EBV-driven signaling further shaping ferroptosis responses. EBV-driven oncogenic programs substantially reshape ferroptosis sensitivity in NPC by activating the Nrf2/Keap1 antioxidant axis, stabilizing SLC7A11 and GPX4, and modulating iron and redox metabolism. These viral mechanisms suppress ferroptotic stress and contribute to both radioresistance and chemoresistance. Suppression of ferroptosis underlies both radioresistance and chemoresistance, whereas restoration of ferroptosis re-sensitizes tumors to treatment. Natural compounds including solasodine, berberine, cucurbitacin B, and celastrol-curcumin combinations, as well as pharmacologic modulators such as HO-1 inhibitors and GPX4 antagonists, have shown ferroptosis-inducing effects in preclinical models, although their translational potential remains to be clarified. Nanotechnology-based platforms (e.g., Bi2Se3 nanosheet hydrogels) further enhance efficacy and reduce toxicity by enabling controlled drug delivery. Biomarker discovery, encompassing ferroptosis-related gene signatures, epigenetic regulators, immune infiltration patterns, EBV DNA load, and on-treatment redox metabolites, provides a foundation for patient stratification. Integration of ferroptosis modulation with radiotherapy, chemotherapy, and immunotherapy represents a compelling strategy to overcome therapy resistance. In synthesizing these findings, this review highlights both the mechanistic basis and the translational promise of ferroptosis modulation as a strategy to overcome treatment resistance in NPC. Future directions include biomarker validation, optimization of drug delivery, early-phase clinical trial development, and multidisciplinary collaboration to balance ferroptosis induction in tumors while protecting normal tissues. Collectively, ferroptosis is emerging as both a vulnerability and a therapeutic opportunity for improving outcomes in NPC.
26 November 2025








