ijms-logo

Journal Browser

Journal Browser

Special Issue "Molecular Research on Neurodegenerative Diseases 2.0"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 31 August 2021.

Special Issue Editors

Prof. Dr. Cesar Borlongan
E-Mail Website
Guest Editor
Department of Neurosurgery, MDC 78, University of South Florida College Medicine, Tampa, FL 33612, USA
Interests: stem cell therapy; stroke; neonatal hypoxic-ischemic injury; Parkinson's disease; traumatic brain injury; translational research
Special Issues and Collections in MDPI journals
Dr. Eleonora Napoli
E-Mail Website
Guest Editor
Department of Molecular Sciences, School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA

Special Issue Information

Dear Colleagues,

This Special Issue is a continuation of our previous Special Issue "Molecular Research on Neurodegenerative Diseases" (https://www.mdpi.com/journal/ijms/special_issues/neurodegenerative_dis).

Many neurological disorders have been characterized by neurodegenerative processes, with key molecular signaling pathways participating in the cascade of cell death events. Even brain diseases, traditionally considered as acute central nervous system injury, such as stroke and traumatic brain injury, have now been recognized as presenting with major pathological components, known as hallmarks of chronic neurodegeneration. Among the many molecular signatures of neurodegeneration, specific molecules associated with inflammation and mitochondrial dysfunction have been implicated as pivotal checkpoints in the propagation of cell death mechanisms, yet also indicated as equally involved as robust targets for anchoring cell survival therapeutics. This Special Issue is dedicated to the recent research progress in deciphering molecular pathways mediating cell death and cell survival in neurodegeneration and its treatment. The goal is to provide an in-depth understanding of the underlying central role of neurodegeneration in brain diseases, and to exploit such knowledge in the development of novel molecule-based therapies against neurodegenerative disorders.

Prof. Dr. Cesar Borlongan
Dr. Eleonora Napoli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neurological disorders
  • stroke
  • traumatic brain injury
  • neurodegeneration
  • Parkinson's disease
  • molecular pathways

Related Special Issue

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Bone Fracture Enhanced Blood-Brain Barrier Breakdown in the Hippocampus and White Matter Damage of Stroke Mice
Int. J. Mol. Sci. 2020, 21(22), 8481; https://doi.org/10.3390/ijms21228481 - 11 Nov 2020
Cited by 1 | Viewed by 362
Abstract
Background: Tibia fracture (BF) before stroke shortly causes long-term post-stroke memory dysfunction in mice. The mechanism is unclear. We hypothesize that BF enhances neuroinflammation and blood brain barrier (BBB) breakdown in the hippocampus and white matter (WM) damage. Methods: Mice were assigned to [...] Read more.
Background: Tibia fracture (BF) before stroke shortly causes long-term post-stroke memory dysfunction in mice. The mechanism is unclear. We hypothesize that BF enhances neuroinflammation and blood brain barrier (BBB) breakdown in the hippocampus and white matter (WM) damage. Methods: Mice were assigned to groups: BF, stroke, BF+stroke (BF 6 h before stroke) and sham. BBB integrity was analyzed 3 days after the surgeries and WM injury was analyzed 3 days and 8 weeks after the surgeries. Results: Stroke and BF+stroke groups had more activated microglia/macrophages and lower levels of claudin-5 in the ipsilateral hippocampi than the BF group. BF+stroke group had the highest number microglia/macrophages and the lowest level of claudin-5 among all groups and had fewer pericytes than BF group. Stroke and BF+stroke groups had smaller WM areas in the ipsilateral basal ganglia than the sham group 8 weeks after the injuries. The BF+stroke group also had smaller WM areas in the ipsilateral than sham and BF groups 3 days after the injuries and in the contralateral basal ganglia than stroke and BF groups 8 weeks after the injuries. Conclusions: BF exacerbates neuroinflammation and BBB leakage in the hippocampus and WM damage in basal ganglia, which could contribute to the long-lasting memory dysfunction in BF+stroke mice. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Open AccessArticle
Ethionamide Preconditioning Enhances the Proliferation and Migration of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells
Int. J. Mol. Sci. 2020, 21(19), 7013; https://doi.org/10.3390/ijms21197013 - 23 Sep 2020
Cited by 1 | Viewed by 604
Abstract
Mesenchymal stem cells (MSCs) are a useful source for cell-based therapy of a variety of immune-mediated diseases, including neurodegenerative disorders. However, poor migration ability and survival rate of MSCs after brain transplantation hinder the therapeutic effects in the disease microenvironment. Therefore, we attempted [...] Read more.
Mesenchymal stem cells (MSCs) are a useful source for cell-based therapy of a variety of immune-mediated diseases, including neurodegenerative disorders. However, poor migration ability and survival rate of MSCs after brain transplantation hinder the therapeutic effects in the disease microenvironment. Therefore, we attempted to use a preconditioning strategy with pharmacological agents to improve the cell proliferation and migration of MSCs. In this study, we identified ethionamide via the screening of a drug library, which enhanced the proliferation of MSCs. Preconditioning with ethionamide promoted the proliferation of Wharton’s jelly-derived MSCs (WJ-MSCs) by activating phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)1/2 signaling. Preconditioning with ethionamide also enhanced the migration ability of MSCs by upregulating expression of genes associated with migration, such as C-X-C motif chemokine receptor 4 (CXCR4) and C-X-C motif chemokine ligand 12 (CXCL12). Furthermore, preconditioning with ethionamide stimulated the secretion of paracrine factors, including neurotrophic and growth factors in MSCs. Compared to naïve MSCs, ethionamide-preconditioned MSCs (ETH-MSCs) were found to survive longer in the brain after transplantation. These results suggested that enhancing the biological process of MSCs induced by ethionamide preconditioning presents itself as a promising strategy for enhancing the effectiveness of MSCs-based therapies. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Open AccessArticle
Proteomic Characterization of the Olfactory Molecular Imbalance in Dementia with Lewy Bodies
Int. J. Mol. Sci. 2020, 21(17), 6371; https://doi.org/10.3390/ijms21176371 - 02 Sep 2020
Viewed by 517
Abstract
Olfactory dysfunction is one of the prodromal symptoms in dementia with Lewy bodies (DLB). However, the molecular pathogenesis associated with decreased smell function remains largely undeciphered. We generated quantitative proteome maps to detect molecular alterations in olfactory bulbs (OB) derived from DLB subjects [...] Read more.
Olfactory dysfunction is one of the prodromal symptoms in dementia with Lewy bodies (DLB). However, the molecular pathogenesis associated with decreased smell function remains largely undeciphered. We generated quantitative proteome maps to detect molecular alterations in olfactory bulbs (OB) derived from DLB subjects compared to neurologically intact controls. A total of 3214 olfactory proteins were quantified, and 99 proteins showed significant alterations in DLB cases. Protein interaction networks disrupted in DLB indicated an imbalance in translation and the synaptic vesicle cycle. These alterations were accompanied by alterations in AKT/MAPK/SEK1/p38 MAPK signaling pathways that showed a distinct expression profile across the OB–olfactory tract (OT) axis. Taken together, our data partially reflect the missing links in the biochemical understanding of olfactory dysfunction in DLB. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Open AccessArticle
Liraglutide Suppresses Tau Hyperphosphorylation, Amyloid Beta Accumulation through Regulating Neuronal Insulin Signaling and BACE-1 Activity
Int. J. Mol. Sci. 2020, 21(5), 1725; https://doi.org/10.3390/ijms21051725 - 03 Mar 2020
Cited by 4 | Viewed by 1406
Abstract
Neuronal insulin resistance is a significant feature of Alzheimer’s disease (AD). Accumulated evidence has revealed the possible neuroprotective mechanisms of antidiabetic drugs in AD. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog and an antidiabetic agent, has a benefit in improving a peripheral insulin resistance. [...] Read more.
Neuronal insulin resistance is a significant feature of Alzheimer’s disease (AD). Accumulated evidence has revealed the possible neuroprotective mechanisms of antidiabetic drugs in AD. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog and an antidiabetic agent, has a benefit in improving a peripheral insulin resistance. However, the neuronal effect of liraglutide on the model of neuronal insulin resistance with Alzheimer’s formation has not been thoroughly investigated. The present study discovered that liraglutide alleviated neuronal insulin resistance and reduced beta-amyloid formation and tau hyperphosphorylation in a human neuroblostoma cell line, SH-SY5Y. Liraglutide could effectively reverse deleterious effects of insulin overstimulation. In particular, the drug reversed the phosphorylation status of insulin receptors and its major downstream signaling molecules including insulin receptor substrate 1 (IRS-1), protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK-3β). Moreover, liraglutide reduced the activity of beta secretase 1 (BACE-1) enzyme, which then decreased the formation of beta-amyloid in insulin-resistant cells. This indicated that liraglutide can reverse the defect of phosphorylation status of insulin signal transduction but also inhibit the formation of pathogenic Alzheimer’s proteins like Aβ in neuronal cells. We herein provided the possibility that the liraglutide-based therapy may be able to reduce such deleterious effects caused by insulin resistance. In view of the beneficial effects of liraglutide administration, these findings suggest that the use of liraglutide may be a promising therapy for AD with insulin-resistant condition. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Open AccessArticle
Sequential Transcriptome Changes in the Penumbra after Ischemic Stroke
Int. J. Mol. Sci. 2019, 20(24), 6349; https://doi.org/10.3390/ijms20246349 - 16 Dec 2019
Cited by 1 | Viewed by 1161
Abstract
To investigate the changes in the expression of specific genes that occur during the acute-to-chronic post-stroke phase, we identified differentially expressed genes (DEGs) between naive cortical tissues and peri-infarct tissues at 1, 4, and 8 weeks after photothrombotic stroke. The profiles of DEGs [...] Read more.
To investigate the changes in the expression of specific genes that occur during the acute-to-chronic post-stroke phase, we identified differentially expressed genes (DEGs) between naive cortical tissues and peri-infarct tissues at 1, 4, and 8 weeks after photothrombotic stroke. The profiles of DEGs were subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology analyses, followed by string analysis of the protein–protein interactions (PPI) of the products of these genes. We found 3771, 536, and 533 DEGs at 1, 4, and 8 weeks after stroke, respectively. A marked decrease in biological–process categories, such as brain development and memory, and a decrease in neurotransmitter synaptic and signaling pathways were observed 1 week after stroke. The PPI analysis showed the downregulation of Dlg4, Bdnf, Gria1, Rhoa, Mapk8, and glutamatergic receptors. An increase in biological–process categories, including cell population proliferation, cell adhesion, and inflammatory responses, was detected at 4 and 8 weeks post-stroke. The KEGG pathways of complement and coagulation cascades, phagosomes, antigen processing, and antigen presentation were also altered. CD44, C1, Fcgr2b, Spp1, and Cd74 occupied a prominent position in network analyses. These time-dependent changes in gene profiles reveal the unique pathophysiological characteristics of stroke and suggest new therapeutic targets for this disease. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Open AccessArticle
Zinc Binding to Tau Influences Aggregation Kinetics and Oligomer Distribution
Int. J. Mol. Sci. 2019, 20(23), 5979; https://doi.org/10.3390/ijms20235979 - 27 Nov 2019
Cited by 4 | Viewed by 1753
Abstract
Metal ions are well known modulators of protein aggregation and are key players in Alzheimer’s Disease, being found to be associated to pathologic protein deposits in diseased brains. Therefore, understanding how metals influence amyloid aggregation is critical in establishing molecular mechanisms that underlie [...] Read more.
Metal ions are well known modulators of protein aggregation and are key players in Alzheimer’s Disease, being found to be associated to pathologic protein deposits in diseased brains. Therefore, understanding how metals influence amyloid aggregation is critical in establishing molecular mechanisms that underlie disease onset and progression. Here, we report data on the interaction of full-length human Tau protein with calcium and zinc ions, evidencing that Tau self-assembly is differently regulated, depending on the type of bound metal ion. We established that Tau binds 4 Zn2+ and 1 Ca2+ per monomer while using native mass spectrometry analysis, without inducing order or substantial conformational changes in the intrinsically disordered Tau, as determined by structural analysis using circular dichroism and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopies. However, Tau aggregation is found to proceed differently in the calcium- and -zinc bound forms. While the rate of aggregation, as determined from thioflavin-T (ThT) fluorescence kinetics, is highly increased in both cases, the reaction proceeds via different mechanisms, as evidenced by the absence of the lag phase in the reaction of zinc-bound Tau. Monitoring Tau aggregation using native mass spectrometry indeed evidenced a distinct distribution of Tau conformers along the reaction, as confirmed by dynamic light scattering analysis. We propose that such differences arise from zinc binding at distinct locations within the Tau sequence that prompt both the rapid formation of seeding oligomers through interactions at high affinity sites within the repeat domains, as well as amorphous aggregation, through low affinity interactions with residues elsewhere in the sequence, including at the fuzzy coat domain. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases 2.0)
Show Figures

Graphical abstract

Open AccessArticle
Reduced Cholinergic Activity in the Hippocampus of Hippocampal Cholinergic Neurostimulating Peptide Precursor Protein Knockout Mice
Int. J. Mol. Sci. 2019, 20(21), 5367; https://doi.org/10.3390/ijms20215367 - 28 Oct 2019
Cited by 1 | Viewed by 1084
Abstract
The cholinergic efferent network from the medial septal nucleus to the hippocampus has an important role in learning and memory processes. This cholinergic projection can generate theta oscillations in the hippocampus to efficiently encode novel information. Hippocampal cholinergic neurostimulating peptide (HCNP) induces acetylcholine [...] Read more.
The cholinergic efferent network from the medial septal nucleus to the hippocampus has an important role in learning and memory processes. This cholinergic projection can generate theta oscillations in the hippocampus to efficiently encode novel information. Hippocampal cholinergic neurostimulating peptide (HCNP) induces acetylcholine synthesis in medial septal nuclei. HCNP is processed from the N-terminal region of a 186 amino acid, 21 kD HCNP precursor protein called HCNP-pp (also known as Raf kinase inhibitory protein (RKIP) and phosphatidylethanolamine-binding protein 1 (PEBP1)). In this study, we generated HCNP-pp knockout (KO) mice and assessed their cholinergic septo-hippocampal projection, local field potentials in CA1, and behavioral phenotypes. No significant behavioral phenotype was observed in HCNP-pp KO mice. However, theta power in the CA1 of HCNP-pp KO mice was significantly reduced because of fewer cholineacetyltransferase-positive axons in the CA1 stratum oriens. These observations indicated disruption of cholinergic activity in the septo-hippocampal network. Our study demonstrates that HCNP may be a cholinergic regulator in the septo-hippocampal network. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Activation of Nrf2 by Natural Bioactive Compounds: A Promising Approach for Stroke?
Int. J. Mol. Sci. 2020, 21(14), 4875; https://doi.org/10.3390/ijms21144875 - 10 Jul 2020
Cited by 5 | Viewed by 868
Abstract
Stroke represents one of the main causes of disability and death worldwide. The pathological subtypes of stroke are ischemic stroke, the most frequent, and hemorrhagic stroke. Nrf2 is a transcription factor that regulates redox homeostasis. In stress conditions, Nrf2 translocates inside the nucleus [...] Read more.
Stroke represents one of the main causes of disability and death worldwide. The pathological subtypes of stroke are ischemic stroke, the most frequent, and hemorrhagic stroke. Nrf2 is a transcription factor that regulates redox homeostasis. In stress conditions, Nrf2 translocates inside the nucleus and induces the transcription of enzymes involved in counteracting oxidative stress, endobiotic and xenobiotic metabolism, regulators of inflammation, and others. Different natural compounds, including food and plant-derived components, were shown to be able to activate Nrf2, mediating an antioxidant response. Some of these compounds were tested in stroke experimental models showing several beneficial actions. In this review, we focused on the studies that evidenced the positive effects of natural bioactive compounds in stroke experimental models through the activation of Nrf2 pathway. Interestingly, different natural compounds can activate Nrf2 through multiple pathways, inducing a strong antioxidant response associated with the beneficial effects against stroke. According to several studies, the combination of different bioactive compounds can lead to a better neuroprotection. In conclusion, natural bioactive compounds may represent new therapeutic strategies against stroke. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Open AccessReview
Bone Marrow-Derived NCS-01 Cells Advance a Novel Cell-Based Therapy for Stroke
Int. J. Mol. Sci. 2020, 21(8), 2845; https://doi.org/10.3390/ijms21082845 - 19 Apr 2020
Cited by 2 | Viewed by 819
Abstract
Human mesenchymal stem cells have been explored for their application in cell-based therapies targeting stroke. Identifying cell lines that stand as safe, accessible, and effective for transplantation, while optimizing dosage, timing, and method of delivery remain critical translational steps towards clinical trials. Preclinical [...] Read more.
Human mesenchymal stem cells have been explored for their application in cell-based therapies targeting stroke. Identifying cell lines that stand as safe, accessible, and effective for transplantation, while optimizing dosage, timing, and method of delivery remain critical translational steps towards clinical trials. Preclinical studies using bone marrow-derived NCS-01 cells show the cells’ ability to confer functional recovery in ischemic stroke. Coculturing primary rat cortical cells or human neural progenitor cells with NCS-01 cells protects against oxygen-glucose deprivation. In the rodent middle cerebral artery occlusion model, intracarotid artery administration of NCS-01 cells demonstrate greater efficacy than other mesenchymal stem cells (MSCs) at improving motor and neurological function, as well as reducing infarct volume and peri-infarct cell loss. NCS-01 cells secrete therapeutic factors, including basic fibroblast growth factor and interleukin-6, while also demonstrating a potentially novel mechanism of extending filopodia towards the site of injury. In this review, we discuss recent preclinical advancements using in vitro and in vivo ischemia models that support the transplantation of NCS-01 in human stroke trials. These results, coupled with the recommendations put forth by the consortium of Stem cell Therapeutics as an Emerging Paradigm for Stroke (STEPS), highlight a framework for conducting preclinical research with the ultimate goal of initiating clinical trials. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Back to TopTop