



Supplementary materials

Table S1. Determination of calcium and zinc binding stoichiometries to hTau441 from the analysis of the +18 peak multiplets (shown in Figure 1).

	Molecular weight (Da)	Experimental molecular weight (Da)
Apo hTau441	45800	45755 (±0.002)
hTau441 + 1 Ca ²⁺	45840	45794 (±0.002)
$hTau441 + 1 Zn^{2+}$	45865	45819 (±0.001)
$hTau441 + 2 Zn^{2+}$	45930	45883 (±0.003)
$hTau441 + 3 Zn^{2+}$	45995	45947 (±0.002)
$hTau441 + 4Zn^{2+}$	46060	46011 (±0.001)

Figure S1. Metal ion binding to Tau does not change its structural conformation. (**A**) Circular dichroism spectra of 10 μ M Tau in the absence (black) or in the presence of 40 μ M CaCl₂ (blue) or 40 μ M ZnCl₂ (grey). (**B**) Attenuated total reflectance Fourier transform infrared spectra of 4 μ M Tau in absence (black) or in presence of 16 μ M CaCl₂ (blue) or 16 μ M ZnCl₂ (grey). Measurements were performed after 1 h of incubation at 4 °C.