Complex Habitats Boost Predator Co-Occurrence, Enhancing Pest Control in Sweet Pepper Greenhouses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Systems
2.2. Sites of Study and Pest Control Plans
2.3. Introduction of Natural Enemies for the Control of Pepper Pests
2.4. Data Collection
2.4.1. In Situ Monitoring of Species
2.4.2. Determining the Environment Surrounding Each Study Site
2.5. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehrlich, P.R.; Ehrlich, A.; Daily, G. Food Security, Population and Environment. Popul. Dev. Rev. 1993, 19, 1–32. Available online: www.jstor.org/stable/2938383 (accessed on 19 March 2021). [CrossRef]
- Lal, R. Sustainable Horticulture and Resource Management. In XXVII IHC-S11 Sustainability through Integrated and Organic Horticulture; Prange, R.K., Bishop, S.D., Eds.; ISHS: Leuven, Belgium, 2008; Volume 767, pp. 19–44. [Google Scholar]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Srivastava, P.; Singh, P.; Upadhyay, S.; Raghubanshi, A.S. Human Overpopulation and Food Security: Challenges for the Agriculture Sustainability. In Environmental Issues Surrounding Human Overpopulation; Singh, R.P., Singh, A., Srivastava, V., Eds.; IGI Global: Hershey, PA, USA, 2017; pp. 12–39. [Google Scholar] [CrossRef]
- OECD. Measuring the Environmental Performance of Agriculture across OECD Countries; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Tommasini, M.G.; Maini, S. Frankliniella occidentalis and other thrips harmful to vegetable and ornamental crops in Europe. In Wageningen Agricultural University Papers; Wageningen Agricultural University: Wageningen, The Netherlands, 1995; Volume 95, pp. 1–42. [Google Scholar]
- De Barro, P.J.; Liu, S.S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 2011, 56, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Fortes, I.M.; Moriones, E.; Navas-Castillo, J. Tomato chlorosis virus in pepper: Prevalence in commercial crops in southeastern Spain and symptomatology under experimental conditions. Plant. Pathol. 2012, 61, 994–1001. [Google Scholar] [CrossRef]
- van Lenteren, J.C. The state of commercial augmentative biological control: Plenty of natural enemies but a frustrating lack of uptake. BioControl 2012, 57, 1–20. [Google Scholar] [CrossRef]
- Calvo, F.J.; Bolckmans, K.; Belda, J.E. Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. BioControl 2011, 56, 185–192. [Google Scholar] [CrossRef]
- Calvo, F.J.; Knapp, M.; van Houten, Y.M.; Hoogerbrugge, H.; Belda, J.E. Amblyseius swirskii: What made this predatory mite such a successful biocontrol agent? Exp. Appl. Acarol. 2015, 65, 419433. [Google Scholar] [CrossRef] [PubMed]
- Bonsignore, C.P.; Vacante, V. Influences of botanical pesticides and biological agents on Orius laevigatus—Frankliniella occidentalis dynamics under greenhouse conditions. J. Plant Prot. Res. 2012, 52, 1523. [Google Scholar] [CrossRef]
- Alipour, Z.; Fathipour, Y.; Farazmand, A. Age-stage predation capacity of Phytoseiulus persimilis and Amblyseius swirskii (Acari: Phytoseiidae) on susceptible and resistant rose cultivars. Int. J. Acarol. 2016, 4, 224228. [Google Scholar]
- Buitenhuis, R.; Shipp, L.; Scott-Dupree, C. Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol. Control 2010, 52, 110–114. [Google Scholar] [CrossRef]
- Sanchez, J.A.; La-Spina, M.; Lacasa, A. Numerical response of Nesidiocoris tenuis (Hemiptera: Miridae) preying on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops. Eur. J. Entomol. 2014, 111, 387–395. [Google Scholar] [CrossRef]
- Abbas, S.; Pérez-Hedo, M.; Colazza, S.; Urbaneja, A. The predatory mirid Dicyphus maroccanus as a new potential biological control agent in tomato crops. BioControl 2014, 59, 565–574. [Google Scholar] [CrossRef]
- Perez-Hedo, M.; Urbaneja, A. Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. J. Pest Sci. 2015, 88, 65–73. [Google Scholar] [CrossRef]
- Bouagga, S.; Urbaneja, A.; Rambla, J.L.; Flors, V.; Granell, A.; Jaques, J.A.; Pérez-Hedo, M. Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag. Sci. 2018, 74, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Leman, A.; Ingegno, B.L.; Tavella, L.; Janssen, A.; Messelink, G.J. The omnivorous predator Macrolophus pygmaeus, a good candidate for the control of both greenhouse whitefly and poinsettia thrips on gerbera plants. Insect Sci. 2020, 27, 510–518. [Google Scholar] [CrossRef]
- Grandi, G. Introduzione Allo Studio Dell’entomologia; Edagricole: Bologna, Italy, 1951; Volume I, p. 950. (In Italian) [Google Scholar]
- Siscaro, G.; Lo Pumo, C.; Tropea Garzia, G.; Tortorici, S.; Gugliuzzo, A.; Ricupero, M.; Biondi, A. Temperature and tomato variety influence the development and the plant damage induced by the zoophytophagous mirid bug Nesidiocoris tenuis. J. Pest Sci. 2019, 92, 1049–1056. [Google Scholar] [CrossRef]
- Urbaneja, A.; Tapia, G.; Stansly, P. Influence of host plant and prey availability on developmental time and survivorship of Nesidiocoris tenuis (Het.: Miridae). Biocontr. Sci. Technol. 2005, 15, 513–518. [Google Scholar] [CrossRef]
- Sanchez, J.A. Factors influencing zoophytophagy in the plantbug Nesidiocoris tenuis (Heteroptera: Miridae). Agric. For. Entomol. 2008, 10, 7580. [Google Scholar] [CrossRef]
- Esparza-Diaz, G.; Marconi, T.; Avila, C.A.; Villanueva, R. Persistence of the Exotic Mirid Nesidiocoris tenuis (Hemiptera: Miridae) in South Texas. Insects 2021, 12, 715. [Google Scholar] [CrossRef]
- Arnó, J.; Castañé, C.; Riudavets, J.; Gabarra, R. Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bull. Entomol. Res. 2010, 100, 105–115. [Google Scholar] [CrossRef]
- Hall, D.R.; Harte, S.J.; Bray, D.P.; Farman, D.I.; James, R.; Silva, C.X.; Fountain, M.T. Hero turned villain: Identification of components of the sex pheromone of the tomato bug, Nesidiocoris tenuis. J. Chem. Ecol. 2021, 47, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Konan, K.A.J.; Monticelli, L.S.; Ouali-N’goran, S.-W.M.; Ramirez-Romero, R.; Martin, T.; Desneux, N. Combination of generalist predators, Nesidiocoris tenuis and Macrolophus pygmaeus, with a companion plant, Sesamum indicum: What benefit for biological control of Tuta absoluta? PLoS ONE 2021, 16, e0257925. [Google Scholar] [CrossRef] [PubMed]
- Biondi, A.; Zappalà, L.; Di Mauro, A.; Tropea Garzia, G.; Russo, A.; Desneux, N.; Siscaro, G. Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? Biocontrology 2016, 61, 79–90. [Google Scholar] [CrossRef]
- Vacante, V.; Tropea Garzia, G. Nesidiocoris tenuis: Antagonista naturale di aleurodidi. Inf. Fitopatol. 1994, 4, 23–28. (In Italian) [Google Scholar]
- Castañé, C.; Alomar, O.; Goula, M.; Gabarra, R. Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biol. Control 2004, 30, 591–597. [Google Scholar] [CrossRef]
- Rim, H.; Uefune, M.; Ozawa, R.; Takabayashi, J. Olfactory response of the omnivorous mirid bug Nesidiocoris tenuis to eggplants infested by prey: Specificity in prey developmental stages and prey species. Biol. Control 2015, 91, 4754. [Google Scholar] [CrossRef]
- Esmaeily, S.; Amin Samih, M.; Izadi, H. Induced eggplant resistance against Trialeurodes vaporariorum triggered by jasmonic acid, abscisic acid, and Nesidiocoris tenuis feeding. Bull. Entomol. Res. 2020, 110, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.B.; Visser, S.; Dalíková, M.; Provazníková, I.; Urbaneja, A.; Pérez-Hedo, M.; Marec, F.; Werren, J.H.; Zwaan, B.J.; Pannebakker, B.A.; et al. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. Insect Mol. Biol. 2021, 30, 188209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abrams, P.A.; Holt, R.D.; Roth, J.D. Apparent competition or apparent mutualism? Shared predation when populations cycle. Ecology 1998, 79, 201–212. [Google Scholar] [CrossRef]
- Long, W.C.; Gamelin, E.F.; Johnson, E.G.; Hines, A.H. Density-dependent indirect effects: Apparent mutualism and apparent competition coexist in a two-prey system. Mar. Ecol. Prog. Ser. 2012, 456, 139–148. [Google Scholar] [CrossRef]
- Climate-Data.org©/AM OP/OpenStreetMap Contributors USt-IdNR: DE279133320. 2021. Available online: https://it.climate-data.org/search/?q=palma+di+montechiaro (accessed on 10 September 2021).
- McCullagh, P.; Nelder, J. Generalized Linear Models, 2nd ed.; Chapman and Hall: London, UK, 1989. [Google Scholar]
- IBM Corp. Released: IBM SPSS Statistics for Windows; Version 23.0; IBM Corp.: Armonk, NY, USA, 2015; p. 46. [Google Scholar]
- Sigmaplot 13.0. Systat Copyright © Systat Software; Systat Software Inc.: San Jose, CA, USA, 2018.
- Parolin, P.; Bresch, C.; Poncet, C.; Desneux, N. Functional characteristics of secondary plants for increased pest management. Int. J. Pest Manag. 2012, 58, 369–377. [Google Scholar] [CrossRef]
- Alomar, Ò.; Goula, M.; Albajes, R. Colonisation of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in northern Spain. Agric. Ecosyst. Environ. 2002, 89, 105–115. [Google Scholar] [CrossRef]
- Ingegno, B.L.; Pansa, M.G.; Tavella, L. Plant preference in the zoophytophagous generalist predator Macrolophus pygmaeus (Heteroptera: Miridae). Biol. Control 2011, 58, 174–181. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, X.; Tan, X.; Desneux, N.; Zappala, L.; Zhang, F.; Wang, S. Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the fower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Manag. Sci. 2017, 73, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Karp, D.S.; Chaplin-Kramer, R.; Meehan, T.D.; Martin, E.A.; DeClerck, F.; Grab, H.; Gratton, C.; Hunt, L.; Larsen, A.E.; Martínez-Salinas, A.; et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. USA 2018, 115, E7863–E7870. [Google Scholar] [CrossRef] [PubMed]
- Ardanuy, A.; Figueras, M.; Matas, M.; Arnó, J.; Agustí, N.; Alomar, Ò.; Albajes, R. Banker plants and landscape composition influence colonisation precocity of tomato greenhouses by mirid predators. J. Pest Sci. 2022, 95, 447–459. [Google Scholar] [CrossRef]
- Carnero, A.; Dıaz, S.; Amador, S.; Hernández, M.; Hernández, E. Impact of Nesidiocoris tenuis Reuter (Hemiptera: Miridae) on whitefly population in protected tomato crops. IOBC/WPRS Bull. 2000, 23, 259. [Google Scholar]
- Malausa, J.C.; Drescher, J.; Franco, E. Prospectives for the use of the predacious bug Macrolophus caliginosus Wagner, (Heteroptera: Miridae) on glasshouse crops. IOBC/WPRS Bull. 1987, 10, 106107. [Google Scholar]
- Saulich, A.K.; Musolin, D.L. Seasonal development of plant bugs (Heteroptera, Miridae): Subfamily Bryocorinae. Entomol. Rev. 2019, 99, 275–291. [Google Scholar] [CrossRef]
- Hughes, G.E.; Bale, J.S.; Sterk, G. Thermal biology and establishment potential in temperate climates of the predatory mirid Nesidiocoris tenuis. BioControl 2009, 54, 785. [Google Scholar] [CrossRef]
- Gavkare, O.; Sharma, P.L.; Chandel, R.S.; Verma, S.C.; Fand, B.B. Temperature impact on the phenology of Nesidiocoris tenuis feeding on Tetranychus urticae: Simulation through life cycle modelling. Int. J. Trop. Insect Sci. 2021, 41, 2319–2329. [Google Scholar] [CrossRef]
- Ingegno, B.L.; Messelink, G.J.; Leman, A.; Sacco, D.; Tavella, L. Development and thermal activity thresholds of European mirid predatory bugs. Biol. Control 2021, 152, 104423. [Google Scholar] [CrossRef]
- Messelink, G.J.; Janssen, A. Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biol. Control 2014, 79, 1–7. [Google Scholar] [CrossRef]
- Perdikis, D.; Lucas, E.; Garantonakis, N.; Giatropoulos, A.; Kitsis, P.; Maselou, D.; Panagakis, S.; Lampropoulos, P.; Paraskevopoulos, A.; Lykouressis, D.; et al. Intraguild predation and sublethal interactions between two zoophytophagous mirids, Macrolophus pygmaeus and Nesidiocoris tenuis. Biol. Control 2014, 70, 35–41. [Google Scholar] [CrossRef]
- Blaeser, P.; Sengonca, C.; Zegula, T. The potential use of different predatory bug species in the biological control of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). J. Pest Sci. 2004, 77, 211–219. [Google Scholar] [CrossRef]
- Bouagga, S.; Urbaneja, A.; Pérez-Hedo, M. Combined use of predatory mirids with Amblyseius swirskii (Acari: Phytoseiidae) to enhance pest management in sweet pepper. J. Econ. Entomol. 2018, 111, 1112–1120. [Google Scholar] [CrossRef]
Company Code and Year of Monitoring | N° of Plants | Typology of Greenhouse | Lat. | Long |
---|---|---|---|---|
1LD (2020) | 58,000 | T | 37°10′34.53″ N | 13°44′0.16″ E |
1CEL (2020) | 33,000 | T | 37°10′13.36″ N | 13°44′21.55″ E |
1GR (2020) | 13,000 | HT | 37°10′12.81″ N | 13°44′48.70″ E |
1GG (2020-21) | 22,000 | T | 37°10′15.44″ N | 13°45′47.53″ E |
1LVP (2020-21) | 12,000 | T | 37°14′19.10″ N | 13°40′32.46″ E |
1LVG (2020-21) | 33,000 | T | 37°13′39.22″ N | 13°41′26.26″ E |
1PM (2020-21) | 50,000 | G | 37°14′40.58″ N | 13°39′33.88″ E |
1Q (2020-21) | 28,000 | T | 37°13′26.67″ N | 13°39′52.24″ E |
1SOR (2020-21) | 28,000 | T | 37°14′8.49″ N | 13°38′28.65″ E |
1CAC (2020-21) | 48,000 | T | 37°13′37.26″ N | 13°39′5.34″ E |
1GIG (2020-21) | 15,000 | G | 37°15′25.47″ N | 13°39′53.74″ E |
1SAC_A (2020-21) | 12,000 | T | 37°15′58.51″ N | 13°39′18.94″ E |
1SAC_S (2020-21) | 20,000 | T | 37°15′38.31″ N | 13°39′26.79″ E |
1COS (2021) | 23,000 | T | 37°10′34.93″ N | 13°45′0.60″ E |
1MANB (2021) | 15,000 | T | 37°14′40.58″ N | 13°39′33.88″ E |
1MANP (2021) | 22,000 | T | 37°9′57.24″ N | 13°46′39.38″ E |
(a) Summary of GLMM fit for the model of the presence of Nesidiocoris tenuis. | ||||||||
Source | F (2020) | Df1 | Df2 | Sign | F (2021) | Df1 | Df2 | Sign |
Corrected model | 16.68 | 17 | 4761 | <0.001 | 16.32 | 21 | 4312 | <0.001 |
Week of monitoring | 4.90 | 13 | 4761 | <0.001 | 4.314 | 17 | 4312 | <0.001 |
ECV | 162.25 | 1 | 4772 | <0.001 | 120.13 | 1 | 4312 | <0.001 |
n. plants | 28.12 | 1 | 4772 | <0.001 | 101.53 | 1 | 4312 | <0.001 |
WFT | 37.17 | 1 | 4772 | <0.001 | 20.43 | 1 | 4312 | <0.001 |
O. laevigatus | 16.51 | 1 | 4772 | <0.001 | 2.493 | 1 | 4312 | 0.114 |
(b) The fixed coefficient for the generalized linear mixed model used to predict Nesidiocoris tenuis. | ||||||||
Model term | Coefficient | Std. Error | T | Sig. | 95% Confidence Interval | |||
Lower | Upper | |||||||
2020 | Intercept | −6.07 | 0.424 | −14.309 | <0.01 | 6.90 | 5.24 | |
Week of monitoring | 0.801 | 0.245 | 3.273 | 0.01 | 0.321 | 1.281 | ||
ECV | 1.77 | 0.139 | 12.74 | <0.01 | 1.50 | 2.04 | ||
n. plants | −0.015 | 0.003 | −5.30 | <0.01 | −0.02 | −0.009 | ||
WFT | −0279 | 0.046 | −6.1 | <0.01 | −0.397 | −0.189 | ||
O. laevigatus | −0.396 | 0.091 | −4.06 | <0.01 | −0.548 | −0.191 | ||
2021 | Intercept | −3.55 | 0.370 | −9.60 | <0.01 | −4.28 | −2.83 | |
Week of monitoring | 1.337 | 0.323 | 1.135 | <0.01 | 0.703 | 1.970 | ||
ECV | 0.767 | 0.070 | 10.96 | <0.01 | 0.63 | 0.904 | ||
n. plants | −0.047 | 0.005 | 10.08 | <0.01 | −0.056 | −0.037 | ||
WFT | −0.214 | 0.047 | −4.52 | <0.01 | −0.308 | −0.121 |
(a) Summary of GLMM fit for the Nesidiocoris tenuis–Orius laevigatus model; | |||||||||||||
Source | F (2020) | Df1 | Df2 | Sign | F (2021) | Df1 | Df2 | Sign | |||||
Corrected model | 202.80 | 5 | 4772 | <0.001 | 30.69 | 6 | 4320 | <0.001 | |||||
N. tenuis (tot) | 634.80 | 1 | 4772 | <0.001 | 43.80 | 1 | 4320 | <0.001 | |||||
O. laevigatus (tot) | 373.03 | 1 | 4772 | <0.001 | 142.78 | 1 | 4320 | <0.001 | |||||
WFT | 16.67 | 1 | 4772 | 0.001 | 3.06 | 1 | 4320 | 0.08 | |||||
n. plants | 12.82 | 1 | 4772 | 0.001 | 2.22 | 1 | 4320 | 0.137 | |||||
Mites in flower | 0.878 | 1 | 4772 | 0.198 | 3.81 | 1 | 4320 | 0.51 | |||||
Aphids in flower | 0.71 | 1 | 4320 | 0.40 | |||||||||
(b) The fixed coefficient for the generalized linear mixed model used to predict Nesidiocoris tenuis-Orius laevigatus. Display coefficients with sig. values less than 0.05. | |||||||||||||
Model term | Coefficient | Std. Error | T | Sig. | 95% Confidence Interval | ||||||||
Lower | Upper | ||||||||||||
2020 | Intercept | −5.294 | 0.204 | −26.00 | <0.001 | −5.69 | −4.89 | ||||||
N. tenuis (tot) | 1.12 | 0.044 | 25.19 | <0.001 | 1.03 | 1.21 | |||||||
O. laevigatus (tot) | 0.99 | 0.048 | 19.31 | <0.001 | 0.83 | 1.02 | |||||||
WFT | −0.36 | 0.088 | −4.08 | 0.001 | −0.54 | −0.19 | |||||||
n. plants | 0.016 | 0.004 | 3.58 | 0.001 | 0.007 | 0.024 | |||||||
2021 | Intercept | −4.73 | 0.604 | −13.46 | <0.001 | −5.42 | −4.042 | ||||||
N. tenuis (tot) | 1.49 | 0.226 | 6.62 | <0.001 | 1.05 | 1.93 | |||||||
O. laevigatus (tot) | 1.50 | 0.125 | 11.95 | <0.001 | 1.25 | 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonsignore, C.P.; van Baaren, J. Complex Habitats Boost Predator Co-Occurrence, Enhancing Pest Control in Sweet Pepper Greenhouses. Horticulturae 2024, 10, 614. https://doi.org/10.3390/horticulturae10060614
Bonsignore CP, van Baaren J. Complex Habitats Boost Predator Co-Occurrence, Enhancing Pest Control in Sweet Pepper Greenhouses. Horticulturae. 2024; 10(6):614. https://doi.org/10.3390/horticulturae10060614
Chicago/Turabian StyleBonsignore, Carmelo Peter, and Joan van Baaren. 2024. "Complex Habitats Boost Predator Co-Occurrence, Enhancing Pest Control in Sweet Pepper Greenhouses" Horticulturae 10, no. 6: 614. https://doi.org/10.3390/horticulturae10060614
APA StyleBonsignore, C. P., & van Baaren, J. (2024). Complex Habitats Boost Predator Co-Occurrence, Enhancing Pest Control in Sweet Pepper Greenhouses. Horticulturae, 10(6), 614. https://doi.org/10.3390/horticulturae10060614