Journal Description
Genes
Genes
is a peer-reviewed, open access journal of genetics and genomics published monthly online by MDPI. The Spanish Society for Nitrogen Fixation (SEFIN) is affiliated with Genes and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, PubAg, and other databases.
- Journal Rank: JCR - Q2 (Genetics and Heredity) / CiteScore - Q2 (Genetics (clinical))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.6 days after submission; acceptance to publication is undertaken in 2.5 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: Reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
2.8 (2024);
5-Year Impact Factor:
3.2 (2024)
Latest Articles
Gut Dysbiosis Driven by CFTR Gene Mutations in Cystic Fibrosis Patients: From Genetic Disruption to Multisystem Consequences and Microbiota Modulation
Genes 2025, 16(9), 1049; https://doi.org/10.3390/genes16091049 (registering DOI) - 6 Sep 2025
Abstract
Mutations in the CFTR genes causing cystic fibrosis (CF) are associated with the presence of thick, viscous mucus and the formation of biofilms in the gastrointestinal tract (GI) that impair intestinal homeostasis, triggering chronic inflammation, epithelial barrier dysfunction, and changes in the composition
[...] Read more.
Mutations in the CFTR genes causing cystic fibrosis (CF) are associated with the presence of thick, viscous mucus and the formation of biofilms in the gastrointestinal tract (GI) that impair intestinal homeostasis, triggering chronic inflammation, epithelial barrier dysfunction, and changes in the composition and activity of the gut microbiota. CFTR protein modulators represent a promising approach to enhancing lower GI function in patients with CF. The aim of the review is to present the complex relationships between the presence of CFTR gene mutations and the gut microbiota dysbiosis in patients with cystic fibrosis. Mutations in the CFTR gene, the molecular basis of cystic fibrosis (CF), disrupt epithelial ion transport and profoundly alter the gastrointestinal environment. Defective chloride and bicarbonate secretion leads to dehydration of the mucosal layer, increased mucus viscosity, and the formation of biofilms that favour microbial persistence, which together promote gut microbiota dysbiosis. This dysbiotic state contributes to impaired epithelial barrier function, chronic intestinal inflammation, and abnormal immune activation, thereby reinforcing disease progression. The interplay between CFTR dysfunction and microbial imbalance appears to be bidirectional, as dysbiosis may further exacerbate epithelial stress and inflammatory signalling. Therapeutic interventions with CFTR protein modulators offer the potential to partially restore epithelial physiology, improve mucus hydration, and foster a microbial milieu more consistent with intestinal homeostasis. The aim of this review is to elucidate the complex relationships between CFTR gene mutations and gut microbiota dysbiosis in patients with cystic fibrosis, with a particular emphasis on the clinical implications of these interactions and their potential to inform novel therapeutic strategies.
Full article
(This article belongs to the Section Microbial Genetics and Genomics)
►
Show Figures
Open AccessArticle
A Comprehensive Analysis of Transcriptomics and Proteomics Elucidates the Cold-Adaptive Ovarian Development of Eriocheir sinensis Farmed in High-Altitude Karst Landform
by
Qing Li, Yizhong Zhang and Lijuan Li
Genes 2025, 16(9), 1048; https://doi.org/10.3390/genes16091048 (registering DOI) - 6 Sep 2025
Abstract
Background: In high-altitude regions, sporadic two-year-old immature Chinese mitten crabs (Eriocheir sinensis) would overwinter and mature in their third year, developing into three-year-old crabs (THCs) with a cold-adaptive strategy. Compared to two-year-old crabs (TWCs) from low-altitude Jiangsu, THCs from Karst landform
[...] Read more.
Background: In high-altitude regions, sporadic two-year-old immature Chinese mitten crabs (Eriocheir sinensis) would overwinter and mature in their third year, developing into three-year-old crabs (THCs) with a cold-adaptive strategy. Compared to two-year-old crabs (TWCs) from low-altitude Jiangsu, THCs from Karst landform and high-altitude Guizhou exhibit significantly larger final size but lower gonadosomatic index (GSI) (p < 0.01). Methods: To elucidate the molecular mechanisms underlying this delayed ovarian development, integrated transcriptomic and proteomic analyses were conducted. Results: Results showed downregulation of PI3K-Akt and FoxO signaling pathways, as well as upregulation of protein digestion and absorption pathways. Differentially expressed proteins indicated alterations in mitochondrial energy transduction and nutrient assimilation. Integrated omics analysis revealed significant changes in nucleic acid metabolism, proteostasis, and stress response, indicating systemic reorganization in energy-nutrient coordination and developmental plasticity. Conclusions: The observed growth-reproductive inverse relationship reflects an adaptive life-history trade-off under chronic cold stress, whereby energy repartitioning prioritizes somatic growth over gonadal investment. Our transcriptomic and proteomic data further suggest a pivotal regulatory role for FOXO3 dephosphorylation in potentially coupling altered energy sensing to reproductive suppression. This inferred mechanism reveals a potential conserved pathway for environmental adaptation in crustaceans, warranting further functional validation.
Full article
(This article belongs to the Section Molecular Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Multi-SNP Haplotypes in Circadian PER3 Gene Are Associated with Mood and Sleep Disorders in University Students
by
Francesca Goodell and Krista K. Ingram
Genes 2025, 16(9), 1047; https://doi.org/10.3390/genes16091047 - 5 Sep 2025
Abstract
Background: Mood disorders, including anxiety, depression, and seasonal affective disorder (SAD), are often comorbid and can be exacerbated by the misalignment of an individual’s circadian rhythm with their social timing. Single-nucleotide polymorphisms (SNPs) in circadian clock genes have been associated with both
[...] Read more.
Background: Mood disorders, including anxiety, depression, and seasonal affective disorder (SAD), are often comorbid and can be exacerbated by the misalignment of an individual’s circadian rhythm with their social timing. Single-nucleotide polymorphisms (SNPs) in circadian clock genes have been associated with both internalizing disorders and sleep disturbances, and some clock polymorphisms, including those in the Period3 (PER3) gene, likely function via delaying or advancing circadian period and affecting sleep–wake patterns. Methods: Here, we explore associations of multiple SNP haplotypes in the PER3 gene with anxiety, depression, internalizing disorder (ID), chronotype, and sleep disturbance in young adults (n = 1109 individuals). Results: We report novel, sex-specific associations of single PER3 SNPs with mood and sleep disorders and highlight strong multi-SNP haplotype associations, revealing a greater risk of mood and sleep disorders in university students with specific PER3 haplotypes. Conclusions: Our results suggest that the additive effects of multiple risk variants amplify the prevalence of mood disorders and sleep disruptions in young adults. Understanding how polymorphisms within circadian genes interact to alter clock function, sleep-wake behavior and downstream physiological changes in the brain may help explain the comorbidity of mood and sleep syndromes and provide future therapeutic targets to combat these debilitating disorders.
Full article
(This article belongs to the Special Issue Genetics of Neuropsychiatric Disorders)
►▼
Show Figures

Figure 1
Open AccessArticle
Identification and Functional Speculation of Genes Related to Sex Pheromone Synthesis Expressed in the Gonads of Female Gynaephora qinghaiensis (Lepidoptera: Lymantriidae)
by
Zhanling Liu, Shujing Gao, Haibin Han, Xiaorui Wang, Guixiang Kou, Haishun Wang and Yuantao Zhou
Genes 2025, 16(9), 1046; https://doi.org/10.3390/genes16091046 - 5 Sep 2025
Abstract
Background: Grassland desertification has garnered significant attention as a pressing issue. Among the key pests affecting plateau meadows, the Gynaephora qinghaiensis (Lepidoptera: Lymantriidae) poses a substantial threat in the Qinghai-Tibet Plateau region, highlighting the urgent need for effective, environmentally friendly control strategies. Insect
[...] Read more.
Background: Grassland desertification has garnered significant attention as a pressing issue. Among the key pests affecting plateau meadows, the Gynaephora qinghaiensis (Lepidoptera: Lymantriidae) poses a substantial threat in the Qinghai-Tibet Plateau region, highlighting the urgent need for effective, environmentally friendly control strategies. Insect sex pheromones are increasingly employed in pest monitoring and management. Methods: This study aims to identify and analyze genes associated with sex pheromone synthesis in grassland caterpillars through transcriptome sequencing and tissue-specific expression analysis. Results: A total of 139,599 transcripts and 56,403 Unigenes were obtained from the sex pheromone glands transcriptome database. A total of 31 genes related to sex pheromone synthesis were identified, including 1 ACC, 8 DES, 6 AR, 7 FAR, 5 FAS, and 4 ACT genes. The expression levels of these genes varied significantly across different tissues in both male and female caterpillars (p < 0.05). GqinACC1, GqinDES1, GqinDES4, GqinDES8, GqinAR3, GqinFAR6, GqinACT2, and GqinACT3 exhibited significantly higher expression levels in the female gonads compared to other tissues (p < 0.01). Conclusions: We hypothesize that specific genes play specific roles in the pheromone synthesis pathways of pests, Key genes were identified based on expression patterns for subsequent functional studies. The results of this study offer valuable data support for subsequent investigations into the mechanisms underlying sex pheromone synthesis in G. qinghaiensis. Additionally, these findings may identify potential targets for future research on genes associated with pheromone biosynthesis, which could disrupt their chemical communication and contribute to grassland conservation efforts.
Full article
(This article belongs to the Special Issue 15th Anniversary of Genes: Feature Papers in the “Molecular Genetics and Genomics” Section)
►▼
Show Figures

Figure 1
Open AccessArticle
Teashirt and C-Terminal Binding Protein Interact to Regulate Drosophila Eye Development
by
Surya Jyoti Banerjee, Jennifer Curtiss, Chase Drucker and Harley Hines
Genes 2025, 16(9), 1045; https://doi.org/10.3390/genes16091045 - 5 Sep 2025
Abstract
Background and Objectives: The Drosophila retinal determination network comprises the transcription factor Teashirt (Tsh) and the transcription co-regulator C-terminal Binding Protein (CtBP), both of which are essential for normal adult eye development. Both Tsh and CtBP show a pattern of co-expression in
[...] Read more.
Background and Objectives: The Drosophila retinal determination network comprises the transcription factor Teashirt (Tsh) and the transcription co-regulator C-terminal Binding Protein (CtBP), both of which are essential for normal adult eye development. Both Tsh and CtBP show a pattern of co-expression in the proliferating cells anterior to the morphogenetic furrow that demarcates the boundary between the anteriorly placed proliferating eye precursor cells and the posteriorly placed differentiating photoreceptor cells in the larval eye-precursor tissue, the eye–antennal disc. The disc ultimately develops into the adult compound eyes, antenna, and other head structures. Both Tsh and CtBP were found to interact genetically during ectopic eye formation in Drosophila, and both were present in molecular complexes purified from gut and cultured cells. However, it remained unknown whether Tsh and CtBP molecules could interact in the eye–antennal discs and elicit an effect on eye development. The present study answers these questions. Methods: 5′ GFP-tagging of the tsh gene in the Drosophila genome and 5′ FLAG-tagging of the ctbp gene were accomplished by the CRISPR-Cas9 and BAC recombineering methods, respectively, to produce GFP-Tsh- and FLAG-CtBP-fused proteins in specific transgenic Drosophila strains. Verification of these proteins’ expression in the larval eye–antennal discs was performed by immunohistological staining and confocal microscopy. Genetic screening was performed to establish functional interaction between Tsh and CtBP during eye development. Scanning Electron Microscopy was performed to image the adult eye structure. Co-immunoprecipitation and GST pulldown assays were performed to show that Tsh and CtBP interact in the cells of the third instar eye–antennal discs. Results: This study reveals that Tsh and CtBP interact genetically and physically in the Drosophila third instar larval eye–antennal disc to regulate adult eye development. This interaction is likely to limit the population of the eye precursor cells in the larval eye disc of Drosophila. Conclusions: The relative abundance of Tsh and CtBP in the third instar larval eye–antennal disc can dictate the outcome of their interaction on the Drosophila eye formation.
Full article
(This article belongs to the Special Issue Genetics and Genomics of Retinal Development and Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
High-Mobility Group Box Protein 3 (HMGB3) Facilitates DNA Interstrand Crosslink Processing and Double-Strand Break Repair in Human Cells
by
Jillian Dangerfield, Anirban Mukherjee, Wade Reh, Anna Battenhouse and Karen M. Vasquez
Genes 2025, 16(9), 1044; https://doi.org/10.3390/genes16091044 - 4 Sep 2025
Abstract
Background/Objectives: DNA-damaging agents can contribute to genetic instability, and such agents are often used in cancer chemotherapeutic regimens due to their cytotoxicity. Thus, understanding the mechanisms involved in DNA damage processing can not only enhance our knowledge of basic DNA repair mechanisms
[...] Read more.
Background/Objectives: DNA-damaging agents can contribute to genetic instability, and such agents are often used in cancer chemotherapeutic regimens due to their cytotoxicity. Thus, understanding the mechanisms involved in DNA damage processing can not only enhance our knowledge of basic DNA repair mechanisms but may also be used to develop improved chemotherapeutic strategies to treat cancer. The high-mobility group box protein 1 (HMGB1) is a known nucleotide excision repair (NER) cofactor, and its family member HMGB3 has been implicated in chemoresistance in ovarian cancer. Here, we aim to understand the potential role(s) of HMGB3 in processing DNA damage. Methods: A potential role in NER was investigated using HMGB3 knockout human cell lines in response to UV damage. Subsequently, potential roles in DNA interstrand crosslink (ICL) and DNA double-strand break (DSB) repair were investigated using mutagenesis assays, metaphase spreads, foci formation, a variety of DNA repair assays, and TagSeq analyses in human cells. Results: Interestingly, unlike HMGB1, HMGB3 does not appear to play a role in NER. We found evidence to suggest that HMGB3 is involved in the processing of both DSBs and ICLs in human cells. Conclusions: These novel results elucidate a role for HMGB3 in DNA damage repair and, surprisingly, also indicate a distinct role of HMGB3 in DNA damage repair from that of HMGB1. These findings advance our understanding of the role of HMGB3 in chemotherapeutic drug resistance and as a target for new chemotherapeutic strategies in the treatment of cancer.
Full article
(This article belongs to the Special Issue DNA Repair, Genomic Instability and Cancer)
►▼
Show Figures

Figure 1
Open AccessArticle
Unraveling the Complex Physiological, Biochemical, and Transcriptomic Responses of Pea Sprouts to Salinity Stress
by
Xiaoyu Xie, Liqing Zhan, Xiuxiu Su and Tingqin Wang
Genes 2025, 16(9), 1043; https://doi.org/10.3390/genes16091043 - 3 Sep 2025
Abstract
Background: The escalating global salinization poses a significant threat to agricultural productivity, necessitating a thorough understanding of plant responses to high salinity. Pea sprouts (Pisum sativum), a nutrient-rich crop increasingly cultivated in salinized regions, serve as an ideal model for
[...] Read more.
Background: The escalating global salinization poses a significant threat to agricultural productivity, necessitating a thorough understanding of plant responses to high salinity. Pea sprouts (Pisum sativum), a nutrient-rich crop increasingly cultivated in salinized regions, serve as an ideal model for such investigations due to their rapid growth cycle and documented sensitivity to ionic stress. Methods: In order to understand the response of pea sprouts in physiological regulation, redox-metabolic adjustments, and transcriptome reprogramming under salt stress, we investigated the effects of high salt concentrations on the ascorbic acid–glutathione cycle, endogenous hormone levels, metabolite profiles, and gene expression patterns in it. Results: Our findings reveal early-phase antioxidant/hormonal adjustments, mid-phase metabolic shifts, and late-phase transcriptomic reprogramming of pea sprouts under salt conditions. In addition, a biphasic response in the ascorbic acid cycle was found, with initial increases in enzyme activities followed by a decline, suggesting a temporary enhancement of antioxidant defenses. Hormonal profiling indicated a significant increase in abscisic acid (ABA) and jasmonic acid (JA), paralleled by a decrease in indole acetic acid (IAA) and dihydrozeatin (DZ), underscoring the role of hormonal regulation in stress adaptation. Metabolomic analysis uncovered salt-induced perturbations in sugars, amino acids, and organic acids, reflecting the metabolic reconfiguration necessary for osmotic adjustment and energy reallocation. Transcriptomic analysis identified 6219 differentially expressed genes (DEGs), with a focus on photosynthesis, hormone signaling, and stress-responsive pathways, providing insights into the molecular underpinnings of salt tolerance. Conclusions: This comprehensive study offers novel insights into the complex mechanisms employed by pea sprouts to combat salinity stress, contributing to the understanding of plant salt tolerance and potentially guiding the development of salt-resistant crop varieties.
Full article
(This article belongs to the Section Plant Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Detection of Development-Specific MicroRNAs in Rabbit Embryos and Culture Media: A Potential Biomarker Approach for Embryo Quality Assessment
by
María Salinas, Nikolett Tokodyné Szabadi, Gréta Dévai, Martin Urbán, Arnold Tóth, Bence Lázár, Timea Pintér, Annamária Nemes, Péter Fancsovits, Lilla Bodrogi and Elen Gócza
Genes 2025, 16(9), 1042; https://doi.org/10.3390/genes16091042 - 3 Sep 2025
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that play a crucial role in regulating various biological processes by influencing post-transcriptional gene expression and gene silencing. Background/Objectives: In this study, rabbit embryos were utilised as a model system to investigate potential biomarkers relevant
[...] Read more.
MicroRNAs (miRNAs) are short, non-coding RNA molecules that play a crucial role in regulating various biological processes by influencing post-transcriptional gene expression and gene silencing. Background/Objectives: In this study, rabbit embryos were utilised as a model system to investigate potential biomarkers relevant to human embryo development. Seven microRNAs (miRNAs) identified in the embryo culture medium were evaluated as biomarkers by analysing the correlation between their expression levels and the developmental quality of rabbit embryos at days 4 and 6. Methods: We analysed the expression of seven development-specific miRNAs (miR-24-3p, miR-28-3p, miR-103a-3p, miR-181a-5p, miR-191-5p, miR-320a-3p, miR-378a-3p) in 4-day-old and 6-day-old rabbit embryos, along with their culture media. Results: Our findings revealed significant differences in the expression levels of these miRNAs between the 4-day-old and 6-day-old embryos. On the other hand, the expression patterns observed in the culture medium samples showed less variation between the two age groups. Nonetheless, analysis of miRNA expression profiles in the spent culture medium from individually cultured embryos enabled the identification of lower-quality embryos, characterised by smaller size and impaired or delayed development. Conclusions: The detection of these miRNAs in embryo culture medium may serve as a reliable indicator of successful progression to the blastocyst stage. Our experimental results identified specific miRNAs whose expression profiles differ according to embryonic stage and quality, thereby reflecting key developmental milestones. Notably, the detectability of these miRNAs in the medium—without prior RNA isolation—indicates their active secretion into the extracellular environment. By synthesising our findings with the existing literature, we refined a panel of miRNAs essential for the development of implantation-competent embryos in both rabbits and humans. Consequently, we developed a non-invasive assay for predicting implantation and pregnancy outcomes, which may have significant applications in human reproductive medicine.
Full article
(This article belongs to the Section RNA)
►▼
Show Figures

Figure 1
Open AccessReview
Molecular Screening for Cervical Cancer
by
Toni Ricardo Martins and José Eduardo Levi
Genes 2025, 16(9), 1041; https://doi.org/10.3390/genes16091041 - 2 Sep 2025
Abstract
Background/Objectives: Cervical cancer (CC), a highly prevalent female neoplasia, has been prevented through repeated cervicovaginal cytology, the so-called Pap test, across women’s lifespans. The now undebatable role of Human Papillomaviruses in the etiology of CC and the development of high-throughput automated molecular
[...] Read more.
Background/Objectives: Cervical cancer (CC), a highly prevalent female neoplasia, has been prevented through repeated cervicovaginal cytology, the so-called Pap test, across women’s lifespans. The now undebatable role of Human Papillomaviruses in the etiology of CC and the development of high-throughput automated molecular amplification diagnostic platforms is allowing for the replacement of the Pap test with HPV testing. The objective of this review is to contextualize the current strategies for cervical cancer screening using molecular assays. Methods: The many existing screening tools relying on molecular markers and their advantages and drawbacks are discussed. Results: Testing for oncogenic Human Papillomavirus DNA is presently the mainstay strategy for molecular screening, replacing cervicovaginal cytology. Conclusions: The presence of HPV-DNA is the most sensitive marker for cervical cancer and its precursor lesions. However, its adoption has led to an increase in the number of screening-positive subjects, generating extra demand for triage resources. New algorithms and technologies are fast being developed to address this need, moving toward risk-based management.
Full article
(This article belongs to the Special Issue Molecular Assays for Mutation and Infectious Agent Detection)
►▼
Show Figures

Figure 1
Open AccessSystematic Review
Effect Size and Replicability in Genetic Studies of Athletic Performance: A Meta-Analytical Review
by
Kinga Wiktoria Łosińska, Paweł Cięszczyk, Giovanna Ghiani and Adam Maszczyk
Genes 2025, 16(9), 1040; https://doi.org/10.3390/genes16091040 - 31 Aug 2025
Abstract
Background/Objectives: This meta-analytical review assesses the relationship between effect size and replication success in genetic studies of athletic performance, focusing on the ACTN3 and ACE polymorphisms across power- and endurance-based sports. The analysis revealed substantial heterogeneity in reported effect sizes (overall I2
[...] Read more.
Background/Objectives: This meta-analytical review assesses the relationship between effect size and replication success in genetic studies of athletic performance, focusing on the ACTN3 and ACE polymorphisms across power- and endurance-based sports. The analysis revealed substantial heterogeneity in reported effect sizes (overall I2 = 72.3%), indicating considerable variability between studies, likely influenced by differences in population genetics, study design, and sample size. Methods: For ACTN3, the pooled effect sizes were 1.40 (95% CI: 1.18–1.65) for power sports and 1.35 (95% CI: 1.12–1.58) for endurance sports. Although the difference between these estimates is small, it reached statistical significance (p = 0.0237), reflecting the large sample size, but it remains of limited practical and clinical significance. For the ACE polymorphism, effect sizes were similar in both endurance (ES = 1.22, 95% CI: 1.05–1.41) and power sports (ES = 1.20, 95% CI: 1.03–1.43), with overlapping confidence intervals, indicating no meaningful difference in association strength between sport types. Effect sizes were calculated as odds ratios (OR) with 95% confidence intervals for case–control designs, with standardized conversion protocols applied for alternative study designs reporting standardized mean differences or regression coefficients. Results: Publication bias was detected, particularly in smaller studies on ACTN3 and power sports (Egger’s test p = 0.007). The pooled effect of ACTN3 in power sports (OR 1.40, 95% CI: 1.18–1.65, 95% PI: 0.89–2.20) was adjusted to OR 1.32 (95% CI: 1.15–1.51) following trim-and-fill publication bias correction. The high degree of heterogeneity (I2 = 72.3%) cautions against overgeneralization of the pooled results and highlights the need for careful interpretation, robust replication studies, and standardized methodologies. Conclusions: The findings emphasize that, while genetic markers such as ACTN3 and ACE are statistically associated with athletic performance, the magnitude of these associations is modest and should be interpreted conservatively. Methodological differences and publication bias continue to limit the reliability of the evidence. Future research should prioritize large, well-powered, and methodologically consistent studies—ideally genome-wide approaches—to better account for the polygenic and multifactorial nature of elite athletic ability.
Full article
(This article belongs to the Section Molecular Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Hsp101-1 Orchestrates Thermotolerance in Rice via Pre-Activated Transcriptional Networks and Modular Cross-Tissue Coordination
by
Hang Yu, Liqun Jiang, Bingrui Sun, Qing Liu, Xingxue Mao, Jing Zhang, Pingli Chen, Wenfeng Chen, Chen Li and Shuwei Lyu
Genes 2025, 16(9), 1039; https://doi.org/10.3390/genes16091039 - 31 Aug 2025
Abstract
Background/Objectives: Rice production faces threats from rising temperatures, demanding thermotolerant varieties. This study characterizes transcriptomic dynamics and identifies Hsp101-1 (heat shock protein 101-1)-associated gene regulatory modules in rice under reproductive-stage heat stress. Methods: Transcriptomics and WGCNA (weighted gene co-expression network analysis)
[...] Read more.
Background/Objectives: Rice production faces threats from rising temperatures, demanding thermotolerant varieties. This study characterizes transcriptomic dynamics and identifies Hsp101-1 (heat shock protein 101-1)-associated gene regulatory modules in rice under reproductive-stage heat stress. Methods: Transcriptomics and WGCNA (weighted gene co-expression network analysis) were conducted in flag leaves and spikelets for wild-type (WT) and Hsp101-1-overexpressing (OE) lines under 40 °C stress at six time points (0–24 h) to reveal the change in gene expressions. Results: The number of DEGs (differentially expressed genes) revealed substantial pre-existing differences in WT and OE lines. Pre treatment, OE flag leaves showed 545 upregulated and 676 downregulated DEGs versus WT leaves. Post heat shock, the number of DEGs in flag leaves and spikelets was significantly reduced by 70–80%. KEGG enrichment of common DEGs across time points showed both WT and OE flag leaves enriched for ribosome biogenesis, ribosomes, and chaperones/folding catalysts. WGCNA identified that the MEdarkslateblue module correlated negatively with WT and positively with OE flag leaves. The MEturquoise module was suppressed at 1 h but activated by 8 h. Spikelet analysis identified the MElightpink4 module (negative correlation with WT, positive with OE) and a similarly dynamic MEturquoise module. Venn analysis identified 76 shared module genes, 71 of which were upregulated in the OE line, indicating that Hsp101-1 activates common protective targets. Hsp101-1’s expression in the WT line was low basally, significantly upregulated at 1–8 h post shock, and returned to low levels by 24 h. Conclusions: Hsp101-1 enhances thermotolerance by (1) constitutively pre-stabilizing transcriptomic networks and reducing transcriptional fluctuations under heat stress and (2) modularly coordinating tissue-specific responses, providing a climate resilience framework.
Full article
(This article belongs to the Section Plant Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Complete Chloroplast Genome Features and Phylogenetic Analysis of Linum usitatissimum L.
by
Qingqing Ji, Guanghui Du, Xingcai An, Junyuan Dong, Xiahong Luo, Changli Chen, Tingting Liu, Lina Zou, Shaocui Li, Jikang Chen and Xia An
Genes 2025, 16(9), 1038; https://doi.org/10.3390/genes16091038 - 31 Aug 2025
Abstract
Background: The chloroplast genome provides rich genetic information for plant evolutionary studies. This study aimed to assemble, annotate, and analyze the complete chloroplast genome of flax cultivar ‘Longya 15’ (Linum usitatissimum L.) and clarify its phylogenetic relationships with other Linaceae species. Methods:
[...] Read more.
Background: The chloroplast genome provides rich genetic information for plant evolutionary studies. This study aimed to assemble, annotate, and analyze the complete chloroplast genome of flax cultivar ‘Longya 15’ (Linum usitatissimum L.) and clarify its phylogenetic relationships with other Linaceae species. Methods: We assembled and annotated the chloroplast genome of ‘Longya 15’ and retrieved chloroplast genomes of related species (e.g., Linum grandiflorum NC_058845.1, Linum lewisii NC_058799.1) from the NCBI database for phylogenetic analysis. Results: The chloroplast genome of ‘Longya 15’ was a 157,074-bp quadripartite structure with 37.42% GC content, encoding 128 genes (83 mRNAs, 37 tRNAs, 8 rRNAs) without pseudogenes. It showed codon bias for leucine (28 codons with RSCU > 1, ending in A/U), 260 dispersed repeats, and 240 SSRs. Ka/Ks analysis revealed purifying selection for most genes, while rps18 and ycf2 had positive selection. ycf1 was identified as the hypervariable region (pi = 0.25024). Phylogenetically, it clustered closest with Linum grandiflorum, followed by L. lewisii and L. perenne, and was related to Hypericum species. Conclusions: This is the first fine assembly and annotation of ‘Longya 15’ chloroplast genome, confirming no pseudogenes in flax chloroplast. It elucidates flax chloroplast genome conservation and evolutionary dynamics, enriches the database, and provides a foundation for Linaceae phylogenetics, germplasm development, and stress-resistant breeding.
Full article
(This article belongs to the Special Issue Genetic and Functional Genomics Insights into the Genetic Improvement of Stress Resistance in Economic Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
Identifying Key Genes of Proanthocyanidin Intervention in Fluoride-Induced Liver Injury: Integrated Molecular Docking and Experimental Validation
by
Zhiyu Wu, Menghuan Xiao, Zelin Gong, Benjie Wang, Wenxin Zhao, Yiyuan Guo and Lu Yang
Genes 2025, 16(9), 1037; https://doi.org/10.3390/genes16091037 - 31 Aug 2025
Abstract
Objectives: The objectives of this study are to investigate the therapeutic targets and mechanisms of proanthocyanidins in alleviating fluoride-induced liver injury through network pharmacology and animal experimental validation and to explore the medicinal value of grape seed proanthocyanidins. Methods: Potential targets
[...] Read more.
Objectives: The objectives of this study are to investigate the therapeutic targets and mechanisms of proanthocyanidins in alleviating fluoride-induced liver injury through network pharmacology and animal experimental validation and to explore the medicinal value of grape seed proanthocyanidins. Methods: Potential targets of proanthocyanidins were predicted using databases such as PubChem, SwissTargetPrediction, and GeneCards, and disease-related targets of fluoride-induced liver injury were retrieved to identify common targets between proanthocyanidins and fluoride-induced liver injury. The STRING database was utilized to construct a protein–protein interaction network, and key targets were analyzed for network topology using Cytoscape software. GO and KEGG enrichment analyses were performed on core target genes to explore the potential molecular mechanisms by which proanthocyanidins alleviate fluoride-induced liver injury. The Genes-miRNA interaction network was generated using Networkanalyst, and the molecular docking results between active components and key targets were validated using the CB-Dock2 visualization tool. In the academic context, a rat model of chronic fluoride poisoning was successfully established by means of intragastric administration of sodium fluoride. The protein expression levels of p-mTOR, p-p70s6, p62, LC3-II, and PARP1 in rat liver tissues were detected via Western blot analysis. Results: Network pharmacological analysis successfully identified 96 key genes, through which proanthocyanidins mitigate fluoride-induced liver injury. KEGG enrichment analysis predicted that proanthocyanidins mainly exert their therapeutic effects through the mTOR signaling pathway. The molecular docking results further demonstrated strong binding affinities between proanthocyanidins and key targets, including mTOR and PARP1. The in vivo experimental results indicate that, compared with the control group, the protein expression levels of p-mTOR, p-p70s6k, and p62 in the liver tissues of rats exposed to sodium fluoride significantly increase. Conversely, the protein expression levels of LC3-II and PARP1 significantly decrease (p < 0.05). The outcome of liver intervention with proanthocyanidins is exactly the opposite. Conclusions: Proanthocyanidins can effectively alleviate fluoride-induced liver injury, potentially by regulating the mTOR signaling pathway, autophagy, and apoptosis mechanisms. This study provides valuable insights into the protective effects of proanthocyanidins against fluoride-induced hepatic damage and offers a theoretical basis for further research in this field.
Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
Genome-Wide Identification of the Dendrocalamus latiflorus IDD Gene Family and Its Functional Role in Bamboo Shoot Development
by
Yu-Han Lin, Peng-Kai Zhu, Mei-Yin Zeng, Xin-Ru Gao, Tian-You He, Jun-Dong Rong, Yu-Shan Zheng and Ling-Yan Chen
Genes 2025, 16(9), 1036; https://doi.org/10.3390/genes16091036 - 30 Aug 2025
Abstract
Background: Transcription factors (TFs) critically regulate gene expression, orchestrating plant growth, development, and stress responses. The conserved IDD (INDETERMINATE DOMAIN) TF family modulates key developmental processes, including root, stem, and seed morphogenesis. Dendrocalamus latiflorus Munro, an economically vital sympodial bamboo
[...] Read more.
Background: Transcription factors (TFs) critically regulate gene expression, orchestrating plant growth, development, and stress responses. The conserved IDD (INDETERMINATE DOMAIN) TF family modulates key developmental processes, including root, stem, and seed morphogenesis. Dendrocalamus latiflorus Munro, an economically vital sympodial bamboo in southern China, suffers significant yield losses due to prevalent bamboo shoot abortion, impacting both edible shoot production and timber output. Despite the documented roles of IDD TFs in shoot apical meristem expression and lateral organ regulation, their genome-wide characterization in D. latiflorus remains unstudied. Methods: Using IDD members from Arabidopsis thaliana, Oryza sativa, and Phyllostachys edulis as references, we identified 45 DlIDD genes in D. latiflorus. Comprehensive bioinformatics analyses included gene characterization, protein physicochemical assessment, phylogenetic reconstruction, and examination of gene structures/conserved domains. Differential expression of DlIDD genes was profiled between dormant and sprouting bamboo shoots to infer putative functions. Results: The 45 DlIDD genes were phylogenetically classified into three subfamilies and unevenly distributed across 34 chromosomes. Whole-genome duplication (WGD) events drove the expansion of this gene family. Promoter analyses revealed enriched cis-regulatory elements associated with hormone response and developmental regulation. Functional analyses suggested potential roles for DlIDD genes in bamboo shoot development. Conclusions: This study provides a foundation for future research to elucidate the functions of IDD TFs and their regulatory mechanisms in bamboo shoot morphogenesis and lateral bud development within woody monocots.
Full article
(This article belongs to the Special Issue Genetic and Functional Genomics Insights into the Genetic Improvement of Stress Resistance in Economic Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
Comprehensive Characterization of the FATs Gene Family in Maize: Phylogeny, Expression Patterns, and Regulatory Networks
by
Yunlong Li, Shuai Hou, Yan Sun, Shujun Li, Minghao Sun, Baitao Guo, Luyao Wang, Quan Cai, Xin Li, Sinan Li and Jianguo Zhang
Genes 2025, 16(9), 1035; https://doi.org/10.3390/genes16091035 - 30 Aug 2025
Abstract
Background: Fatty acyl–ACP thioesterase (FAT) genes regulate fatty acid composition and content, yet the FAT family in maize has not been systematically characterized. Methods: Ten ZmFAT genes were identified from the maize genome and analyzed for gene structure, protein properties, phylogeny, collinearity, cis-acting
[...] Read more.
Background: Fatty acyl–ACP thioesterase (FAT) genes regulate fatty acid composition and content, yet the FAT family in maize has not been systematically characterized. Methods: Ten ZmFAT genes were identified from the maize genome and analyzed for gene structure, protein properties, phylogeny, collinearity, cis-acting elements, and predicted interactions. Transcriptome and qRT–PCR data were used to assess expression patterns during seed development. Results: The ten ZmFAT genes were grouped into two subfamilies (three ZmFATA and seven ZmFATB genes). Two pairs of collinear genes were detected within maize and one pair between maize and rice. Promoter analysis revealed light- and development-responsive elements. Two genes were functionally annotated in fatty acid biosynthesis, while five proteins exhibited interactions and 14 miRNAs were predicted to regulate ZmFAT genes. Expression analysis showed that ZmFATA1/2 and ZmFATB4/6/7 maintained high expression in both upper and lower seed parts, and qRT–PCR confirmed their gradual upregulation during seed development. Conclusion: This study provides the first comprehensive characterization of the maize ZmFAT family, offering insights into fatty acid metabolism and valuable genetic resources for improving maize oil composition.
Full article
(This article belongs to the Section Plant Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Bulk and Single-Cell Transcriptomes Reveal Exhausted Signature in Prognosis of Hepatocellular Carcinoma
by
Ruixin Chun, Haisen Ni, Ziyi Zhao and Chunlong Zhang
Genes 2025, 16(9), 1034; https://doi.org/10.3390/genes16091034 - 30 Aug 2025
Abstract
Background/Objectives: Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with poor prognosis. T cell exhaustion (TEX) is a key factor in tumor immune evasion and therapeutic resistance. In this study, we integrated single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) data to
[...] Read more.
Background/Objectives: Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with poor prognosis. T cell exhaustion (TEX) is a key factor in tumor immune evasion and therapeutic resistance. In this study, we integrated single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) data to characterize TEX-related transcriptional features in HCC. Methods: We first computed TEX scores for each sample using a curated 65-gene signature and classified them into high-TEX and low-TEX groups by the median score. Differentially expressed genes were identified separately in scRNA-seq and bulk RNA-seq data, then intersected to retain shared candidates. A 26-gene prognostic signature was derived from these candidates via univariate Cox and LASSO regression analysis. Results: The high-TEX group exhibited increased expression of immune checkpoint molecules and antigen presentation molecules, suggesting a tumor microenvironment that is more immunosuppressive but potentially more responsive to immunotherapy. Functional enrichment analysis and protein–protein interaction (PPI) network construction further validated the roles of these genes in immune regulation and tumor progression. Conclusions: This study provides a comprehensive characterization of the TEX landscape in HCC and identifies a robust gene signature associated with prognosis and immune infiltration. These findings highlight the potential of targeting TEX-related genes for personalized immunotherapeutic strategies in HCC.
Full article
(This article belongs to the Special Issue AI and Machine Learning in Cancer Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Sex-Specific Transcriptome Signatures in Pacific Oyster Hemolymph
by
Jingwei Song, Odile V. J. Maurelli, Mark S. Yeats, Neil F. Thompson, Michael A. Banks and Bernarda Calla
Genes 2025, 16(9), 1033; https://doi.org/10.3390/genes16091033 - 30 Aug 2025
Abstract
Background/Objectives: Sex determination and differentiation exhibit remarkable molecular diversity across taxa, driven by genetic, epigenetic, and environmental factors. Invertebrates with sequential hermaphroditism, such as the Pacific oyster (Magallana gigas), represent a poorly understood system despite their role as keystone species and
[...] Read more.
Background/Objectives: Sex determination and differentiation exhibit remarkable molecular diversity across taxa, driven by genetic, epigenetic, and environmental factors. Invertebrates with sequential hermaphroditism, such as the Pacific oyster (Magallana gigas), represent a poorly understood system despite their role as keystone species and contribution to a substantial aquaculture industry. Methods: To identify sex-related molecular markers during gametogenesis, we repeatedly sampled hemolymph from artificially conditioned oysters over two months, and sex phenotypes were assigned at the end of the experiment by biopsy. Results: RNA-sequencing analysis of five males and five females revealed subtle yet consistent sex-specific transcriptional signatures in hemolymph. We show that gametogenesis proceeds asynchronously among oysters, even within the same sex individuals. Complex physiological trade-offs were discovered between sexes during gonad maturation; in early stages of sexual maturation, females prioritized cell division, whereas males suppressed it. Females exhibited higher expression of solute carrier family (SLC) genes, suggesting enhanced nutrient exchange during oogenesis. Temporal dynamics highlighted differential expression of genes regulating cross-membrane ion gradients (e.g., transient receptor potential channels) and signal transduction (e.g., signal transducer and activator of transcription), previously linked to environmental sex determination (ESD) in some reptilian species. Conclusions: Together, these findings underscore that gametogenesis in Pacific oysters is complex and dynamic, and that molecular pathways of ESD may be partially conserved between invertebrate and vertebrate species.
Full article
(This article belongs to the Special Issue Molecular Genetics Applied to Aquaculture: From Breeding Stock Selection to Biotechnological Innovations)
►▼
Show Figures

Figure 1
Open AccessArticle
Genome-Wide Identification of the BnaRFS Gene Family and Functional Characterization of BnaRFS6 in Brassica napus
by
Bingqian Zhou, Chunyun Guan and Mei Guan
Genes 2025, 16(9), 1032; https://doi.org/10.3390/genes16091032 - 29 Aug 2025
Abstract
Background: Raffinose synthase (RFS) plays a crucial role in plant growth and development, as well as in responses to biotic and abiotic stresses. However, its functions in Brassica napus remain poorly understood. Methods: To investigate the characteristics of the RFS gene family in
[...] Read more.
Background: Raffinose synthase (RFS) plays a crucial role in plant growth and development, as well as in responses to biotic and abiotic stresses. However, its functions in Brassica napus remain poorly understood. Methods: To investigate the characteristics of the RFS gene family in B. napus (rapeseed), five Arabidopsis thaliana RFS gene sequences were used as references to identify thirteen RFS genes in B. napus, four in Brassica rapa, and six in Brassica oleracea. A comprehensive analysis was conducted, including molecular characteristics, phylogenetic relationships, conserved protein motifs, gene structures, and chromosomal localization. Results: BnaC02G0100500ZS was selected as a candidate gene due to its unique expression profile. Sequence alignment identified it as BnaRFS6, and subcellular localization revealed that its encoded protein is localized in the mitochondria. Overexpression of BnaRFS6 in rapeseed significantly affected the soluble sugar and starch content in the stalks, resulting in increased levels of fructose, glucose, and raffinose, and a decreased starch content. Conclusions: These findings highlight the role of BnaRFS6 in enhancing sugar metabolism in B. napus, particularly in relation to fructose, glucose, and raffinose accumulation. Understanding its potential function provides a foundation for improving the sugar content and taste of rapeseed stalks through genetic engineering in the future.
Full article
(This article belongs to the Section Plant Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessReview
Genetics of Retinoblastoma: An Overview and Significance of Genetic Testing in Clinical Practice
by
Khaled K. Abu-Amero, Altaf A. Kondkar, Naif A. M. Almontashiri, Abdullah M. Khan, Azza M. Y. Maktabi, Syed Hameed and Saleh AlMesfer
Genes 2025, 16(9), 1031; https://doi.org/10.3390/genes16091031 - 29 Aug 2025
Abstract
Retinoblastoma is a rare but malignant pediatric retinal tumor, affecting 1 in 15,000–20,000 live births annually. It arises from biallelic mutations in the RB1 tumor suppressor gene (chromosome 13q14.2), leading to uncontrolled cell cycle progression. Clinically, it presents as unilateral (60%) or bilateral
[...] Read more.
Retinoblastoma is a rare but malignant pediatric retinal tumor, affecting 1 in 15,000–20,000 live births annually. It arises from biallelic mutations in the RB1 tumor suppressor gene (chromosome 13q14.2), leading to uncontrolled cell cycle progression. Clinically, it presents as unilateral (60%) or bilateral (40%) disease, with leukocoria and strabismus as hallmark signs. Untreated, retinoblastoma is fatal due to metastatic spread. The disease follows Knudson’s two-hit model: heritable forms (30–40% of cases) involve a germline RB1 mutation (M1) and a somatic second hit (M2), predisposing to bilateral/multifocal tumors and secondary cancers. Non-heritable cases (60–70%) result from somatic RB1 mutations or, rarely, MYCN amplification (2%). Genetic testing is critical to classify risk (H0, H1, and HX categories), guide surveillance, and inform family counseling. Bilateral cases almost always harbor germline mutations, while 15% of unilateral cases may carry germline/mosaic RB1 defects. Advanced techniques (Sanger/NGS sequencing for mutation detection, NGS for copy number alterations, and methylation assays) detect RB1 mutations, CNVs, and epigenetic silencing. Tumor DNA analysis resolves ambiguous cases. H1 patients require intensive ocular and brain MRI surveillance, while H0 cases need no follow-up. Prenatal/preimplantation genetic diagnosis (PGD) can prevent transmission in high-risk families. Emerging research explores additional genes (BCOR, CREBBP) and MYCN-amplified subtypes. Genetic counseling addresses recurrence risks, reproductive options, and long-term cancer monitoring. Integrating genetic insights into clinical practice enhances precision medicine, reducing morbidity and healthcare costs. Future directions include whole-genome sequencing and functional studies to refine therapeutic strategies.
Full article
(This article belongs to the Section Genetic Diagnosis)
Open AccessArticle
Assembly of Mitochondrial Genome of Oriental Plover (Anarhynchus veredus) and Phylogenetic Relationships Within the Charadriidae
by
Baodong Yuan, Xuan Shao, Lingyi Wang, Jie Yang, Xiaolin Song and Huaming Zhong
Genes 2025, 16(9), 1030; https://doi.org/10.3390/genes16091030 - 29 Aug 2025
Abstract
Background: Traditional morphology-based classification of the Oriental Plover (Anarhynchus veredus) is inconsistent with molecular evidence, underscoring the necessity of incorporating molecular data to elucidate its evolutionary relationships within Charadriidae. Methods: Here, we present the first complete mitochondrial genome of A. veredus
[...] Read more.
Background: Traditional morphology-based classification of the Oriental Plover (Anarhynchus veredus) is inconsistent with molecular evidence, underscoring the necessity of incorporating molecular data to elucidate its evolutionary relationships within Charadriidae. Methods: Here, we present the first complete mitochondrial genome of A. veredus by Illumina NovaSeq Sequencing and explore its evolutionary implications within Charadriidae. Results: The mitogenome spans 16,886 bp and exhibits conserved structural features typical of Charadriidae, including gene order, overlapping coding regions, and intergenic spacers. Nucleotide composition analysis revealed a GC content of 44.3%, aligning with other Charadriidae species (44.5–45.8%), and hierarchical GC distribution across rRNA, tRNA, and protein-coding genes (PCGs) reflects structural and functional optimization. Evolutionary rate heterogeneity was observed among PCGs, with ATP8 and ND6 showing accelerated substitution rates (Ka/Ks = 0.1748 and 0.1352) and COX2 under strong purifying selection (Ka/Ks = 0.0678). Notably, a conserved translational frameshift in ND3 (position 174) was identified. Phylogenetic analyses (ML/NJ) of 88 Charadriiformes species recovered robust topologies, confirming that the division of Charadriidae into four monophyletic clades (Pluvialis, Vanellus, Charadrius, and Anarhynchus) and supporting the reclassification of A. veredus under Anarhynchus. Conclusions: This study resolves the systematic position of A. veredus and highlights the interplay between conserved mitochondrial architecture and lineage-specific adaptations in shaping shorebird evolution.
Full article
(This article belongs to the Section Animal Genetics and Genomics)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Genes Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomolecules, IJMS, Marine Drugs, Molecules, Sci. Pharm., Genes, Pharmaceutics, Crystals
Bioinformatics in Drug Design and Discovery—2nd Edition
Topic Editors: Bing Niu, Suren Rao Sooranna, Pufeng DuDeadline: 30 September 2025
Topic in
Agriculture, Agronomy, Crops, Genes, Plants, DNA
Vegetable Breeding, Genetics and Genomics, 2nd Volume
Topic Editors: Umesh K. Reddy, Padma Nimmakayala, Georgia NtatsiDeadline: 31 October 2025
Topic in
Brain Sciences, CIMB, Epigenomes, Genes, IJMS, DNA
Genetics and Epigenetics of Substance Use Disorders
Topic Editors: Aleksandra Suchanecka, Anna Maria Grzywacz, Kszysztof ChmielowiecDeadline: 15 November 2025
Topic in
Animals, CIMB, Genes, IJMS, DNA
Advances in Molecular Genetics and Breeding of Cattle, Sheep, and Goats
Topic Editors: Xiukai Cao, Hui Li, Huitong ZhouDeadline: 30 November 2025

Special Issues
Special Issue in
Genes
Molecular Genetics of Rare Disorders
Guest Editor: Miriam Lucia CarrieroDeadline: 10 September 2025
Special Issue in
Genes
Pediatric Rare Diseases: Genetics and Diagnosis
Guest Editor: Antonio F. Martínez‐MonsenyDeadline: 15 September 2025
Special Issue in
Genes
Molecular Breeding and Genetics of Plant Drought Resistance
Guest Editors: Ivan Pejić, Miroslav BukanDeadline: 15 September 2025
Special Issue in
Genes
Psychiatric Pharmacogenomics
Guest Editor: Martina HahnDeadline: 15 September 2025
Topical Collections
Topical Collection in
Genes
Tools for Population and Evolutionary Genetics
Collection Editors: David Alvarez-Ponce, Julie M. Allen, Won C. Yim, Marco Fondi
Topical Collection in
Genes
Study on Genotypes and Phenotypes of Pediatric Clinical Rare Diseases
Collection Editors: Livia Garavelli, Stefano Giuseppe Caraffi
Topical Collection in
Genes
Genetics and Genomics of Hereditary Disorders of Connective Tissue
Collection Editors: Nazli B. Mcdonnell, Bert Callewaert, Clair A. Francomano, Philippe Khau-Van-Kien, Yves Dulac
Topical Collection in
Genes
Genetics and Genomics of Rare Disorders
Collection Editors: Stefania Zampatti, Emiliano Giardina