Smart Polymer Hydrogels: Synthesis, Properties and Applications - Volume I

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Processing and Engineering".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 34946

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor

College of Bioengineering, Chongqing University, Chongqing 400044, China
Interests: supramolecular hydrogels; biomaterials; peptide self-assembly; peptide crystallization; structure–property relationship; biomedical materials; optoelectronic devices
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to provide a comprehensive collection of works on recent advances and developments in smart polymer hydrogels applied to the biomedical and nanotechnological fields. The research topic covers all hydrogels, including polymer hydrogels, supramolecular gels, hybrid hydrogels, metallohydrogels, etc.

Stimulus-responsive polymer hydrogels have attracted considerable interest as promising smart materials due to their tremendous potential in biomedical and nanotechnological applications. They can respond to different chemical and physical external stimuli, including pH, temperature, light, enzyme activity, redox agents, the electric or magnetic field, and chemicals. Compared to single stimulus-responsive polymer hydrogels, multiple-responsive hydrogels exhibit higher flexibility and tunability to realize multiplefunctionality in a synergistic manner. The structural and phase transition of polymer hydrogels triggered by external stimuli offers enormous potential for drug delivery, tumor therapy, tissue engineering, and biodevices. Thus, in this Special Issue, we invite researchers working in the hydrogel-related fields to contribute their current new work to this Special Issue on smart polymer hydrogels.

Prof. Dr. Wei Ji
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer hydrogels
  • supramolecular hydrogels
  • hydrogel preparation
  • stimuli-responsive
  • mechanical properties
  • drug delivery
  • tumor treatment
  • tissue engineering
  • biomedical applications
  • optoelectronic devices
  • nanotechnological applications

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

2 pages, 164 KiB  
Editorial
Editorial on Special Issue: “Smart Polymer Hydrogels: Synthesis, Properties and Applications—Volume I”
by Wei Ji
Gels 2023, 9(2), 84; https://doi.org/10.3390/gels9020084 - 19 Jan 2023
Viewed by 983
Abstract
Smart polymer hydrogels are soft materials formed by crosslinking with various covalent and non-covalent interactions [...] Full article

Research

Jump to: Editorial, Review, Other

14 pages, 4183 KiB  
Article
Hydrogel Check-Valves for the Treatment of Hydrocephalic Fluid Retention with Wireless Fully-Passive Sensor for the Intracranial Pressure Measurement
by Seunghyun Lee, Shiyi Liu, Ruth E. Bristol, Mark C. Preul and Jennifer Blain Christen
Gels 2022, 8(5), 276; https://doi.org/10.3390/gels8050276 - 29 Apr 2022
Cited by 2 | Viewed by 2320
Abstract
Hydrocephalus (HCP) is a neurological disease resulting from the disruption of the cerebrospinal fluid (CSF) drainage mechanism in the brain. Reliable draining of CSF is necessary to treat hydrocephalus. The current standard of care is an implantable shunt system. However, shunts have a [...] Read more.
Hydrocephalus (HCP) is a neurological disease resulting from the disruption of the cerebrospinal fluid (CSF) drainage mechanism in the brain. Reliable draining of CSF is necessary to treat hydrocephalus. The current standard of care is an implantable shunt system. However, shunts have a high failure rate caused by mechanical malfunctions, obstructions, infection, blockage, breakage, and over or under drainage. Such shunt failures can be difficult to diagnose due to nonspecific systems and the lack of long-term implantable pressure sensors. Herein, we present the evaluation of a fully realized and passive implantable valve made of hydrogel to restore CSF draining operations within the cranium. The valves are designed to achieve a non-zero cracking pressure and no reverse flow leakage by using hydrogel swelling. The valves were evaluated in a realistic fluidic environment with ex vivo CSF and brain tissue. They display a successful operation across a range of conditions, with negligible reverse flow leakage. Additionally, a novel wireless pressure sensor was incorporated alongside the valve for in situ intracranial pressure measurement. The wireless pressure sensor successfully replicated standard measurements. Those evaluations show the reproducibility of the valve and sensor functions and support the system’s potential as a chronic implant to replace standard shunt systems. Full article
Show Figures

Figure 1

16 pages, 4203 KiB  
Article
Tough, Self-Recoverable, Spiropyran (SP3) Bearing Polymer Beads Incorporated PAM Hydrogels with Sole Mechanochromic Behavior
by Jianxiong Xu, Yuecong Luo, Yin Chen, Ziyu Guo, Yutong Zhang, Shaowen Xie, Na Li and Lijian Xu
Gels 2022, 8(4), 208; https://doi.org/10.3390/gels8040208 - 27 Mar 2022
Cited by 10 | Viewed by 2886
Abstract
Spiropyran-containing hydrogels that can respond to external stimuli such as temperature, light, and stress have attracted extensive attention in recent years. However, most of them are generally dual or multiple stimuli-responsive to external stimuli, and the interplay of different stimulus responses is harmful [...] Read more.
Spiropyran-containing hydrogels that can respond to external stimuli such as temperature, light, and stress have attracted extensive attention in recent years. However, most of them are generally dual or multiple stimuli-responsive to external stimuli, and the interplay of different stimulus responses is harmful to their sensitivity. Herein, spiropyran bearing polymer beads incorporated PAM (poly(AM–co–MA/DMSP3)) hydrogels with sole mechanochromic properties were synthesized by emulsion polymerization of acrylamide (AM) and methyl acrylate (MA) in the presence of spiropyran dimethacrylate mechanophore (DMSP3) crosslinker. Due to the hydrophobic nature of MA and DMSP3, the resultant hydrogel afforded a rosary structure with DMSP3 bearing polymer beads incorporated in the PAM network. It is found that the chemical component (e.g., AM, MA, and DMSP3 concentrations) significantly affect the mechanical and mechanoresponsive properties of the as-obtained poly(AM–co–MA/DMSP3) hydrogel. Under optimal conditions, poly(AM–co–MA/DMSP3) hydrogel displayed high mechanical properties (tensile stress of 1.91 MPa, a tensile strain of 815%, an elastic modulus of 0.67 MPa, and tearing energy of 3920 J/m2), and a good self-recovery feature. Owing to the mechanoresponsive of SP3, the hydrogels exhibited reversible color changes under force-induced deformation and relaxed recovery states. More impressive, the poly(AM–co–MA/DMSP3) hydrogel showed a linear correlation between tensile strain and chromaticity (x, y) as well as a stain and resting time-dependent color recovery rate. This kind of hydrogel is believed to have great potential in the application of outdoor strain sensors. Full article
Show Figures

Figure 1

19 pages, 4283 KiB  
Article
Formulation, Characterization, and In Vitro Drug Release Study of β-Cyclodextrin-Based Smart Hydrogels
by Muhammad Suhail, Quoc Lam Vu and Pao-Chu Wu
Gels 2022, 8(4), 207; https://doi.org/10.3390/gels8040207 - 26 Mar 2022
Cited by 9 | Viewed by 2785
Abstract
In this study, novel pH-responsive polymeric β-cyclodextrin-graft-poly(acrylic acid/itaconic acid) hydrogels were fabricated by the free radical polymerization technique. Various concentrations of β-cyclodextrin, acrylic acid, and itaconic acid were crosslinked by ethylene glycol dimethacrylate in the presence of ammonium persulfate. The crosslinked [...] Read more.
In this study, novel pH-responsive polymeric β-cyclodextrin-graft-poly(acrylic acid/itaconic acid) hydrogels were fabricated by the free radical polymerization technique. Various concentrations of β-cyclodextrin, acrylic acid, and itaconic acid were crosslinked by ethylene glycol dimethacrylate in the presence of ammonium persulfate. The crosslinked hydrogels were used for the controlled delivery of theophylline. Loading of theophylline was conducted by the absorption and diffusion method. The fabricated network of hydrogel was evaluated by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The crosslinking among hydrogel contents and drug loading by the fabricated hydrogel were confirmed by FTIR analysis, while TGA indicated a high thermal stability of the prepared hydrogel as compared to pure β-cyclodextrin and itaconic acid. The high thermal stability of the developed hydrogel indicated an increase in the thermal stability of β-cyclodextrin and itaconic acid after crosslinking. Similarly, a decrease in crystallinity of β-cyclodextrin and itaconic acid was observed after crosslinking, as evaluated by XRD analysis. SEM revealed an irregular and hard surface of the prepared hydrogel, which may be correlated with strong crosslinking among hydrogel contents. Crosslinked insoluble and uncrosslinked soluble fractions of hydrogel were evaluated by sol–gel analysis. An increase in gel fraction was seen with the increase in compositions of hydrogel contents, while a decrease in sol fraction was observed. Dynamic swelling and dissolution studies were performed in three various buffer solutions of pH 1.2, 4.6, and 7.4, respectively. Maximum swelling and drug release were observed at higher pH values as compared to the lower pH value due to the deprotonation and protonation of functional groups of the hydrogel contents; thus, the pH-sensitive nature of the fabricated hydrogel was demonstrated. Likewise, water penetration capability and polymer volume were evaluated by porosity and polymer volume studies. Increased incorporation of β-cyclodextrin, acrylic acid, and itaconic acid led to an increase in swelling, drug release, drug loading, and porosity of the fabricated hydrogel, whereas a decrease was detected with the increasing concentration of ethylene glycol dimethacrylate. Conclusively, the prepared hydrogel could be employed as a suitable and promising carrier for the controlled release of theophylline. Full article
Show Figures

Figure 1

15 pages, 4003 KiB  
Article
Preliminary Investigation of Linum usitatissimum Mucilage-Based Hydrogel as Possible Substitute to Synthetic Polymer-Based Hydrogels for Sustained Release Oral Drug Delivery
by Arshad Mahmood, Alia Erum, Sophia Mumtaz, Ume Ruqia Tulain, Nadia Shamshad Malik and Mohammed S. Alqahtani
Gels 2022, 8(3), 170; https://doi.org/10.3390/gels8030170 - 9 Mar 2022
Cited by 9 | Viewed by 2641
Abstract
The aim of this study was to investigate the potential of Linum usitatissimum mucilage, a natural polymer, in developing a sustained release hydrogel for orally delivered drugs that require frequent dosing. For this purpose, nicorandil (a model drug)-loaded hydrogels with various feed ratios [...] Read more.
The aim of this study was to investigate the potential of Linum usitatissimum mucilage, a natural polymer, in developing a sustained release hydrogel for orally delivered drugs that require frequent dosing. For this purpose, nicorandil (a model drug)-loaded hydrogels with various feed ratios of Linum usitatissimum mucilage, acrylamide (monomer) and methylene bis-acrylamide (crosslinker) were prepared. The newly synthesized hydrogel formulations were probed fundamentally with respect to swelling behaviour, solvent penetration, and the release of the drug from the hydrogels. Later, the selected formulations were further characterized by Fourier-transform infrared spectroscopy, thermal analysis, X-ray diffraction analysis, and scanning electron microscopy. The swelling coefficient demonstrated a linear relation with the polymer ratio; however, an inverse behaviour in the case of monomer and crosslinker was observed. The drug release studies, performed at pH 1.2 and 4.5 and considering the dynamic environment of GIT, demonstrated that all formulations followed the Korsmeyer–Peppas model, displaying a slow drug release via diffusion and polymer erosion. FTIR analysis confirmed the successful grafting of acrylamide on linseed mucilage. Furthermore, scanning electron microscopy revealed a clear surface morphology with folds and pinholes in the hydrogel. Therefore, based upon the in-vitro outcomes, it can be concluded that a promising sustained release hydrogel can be prepared from natural polymer, Linum usitatissimum mucilage, offering many-fold benefits over the conventional synthetic polymers for oral delivery of drugs. Full article
Show Figures

Figure 1

17 pages, 10774 KiB  
Article
Cleaning of Wastewater Using Crosslinked Poly(Acrylamide-co-Acrylic Acid) Hydrogels: Analysis of Rotatable Bonds, Binding Energy and Hydrogen Bonding
by Salah Hamri, Tewfik Bouchaour, Djahida Lerari, Zohra Bouberka, Philippe Supiot and Ulrich Maschke
Gels 2022, 8(3), 156; https://doi.org/10.3390/gels8030156 - 3 Mar 2022
Cited by 9 | Viewed by 2682
Abstract
The discharge of untreated wastewater, often contaminated by harmful substances, such as industrially used dyes, can provoke environmental and health risks. Among various techniques, the adsorption of dyes, using three-dimensional (3D) networks consisting of hydrophilic polymers (hydrogels), represents a low-cost, clean, and efficient [...] Read more.
The discharge of untreated wastewater, often contaminated by harmful substances, such as industrially used dyes, can provoke environmental and health risks. Among various techniques, the adsorption of dyes, using three-dimensional (3D) networks consisting of hydrophilic polymers (hydrogels), represents a low-cost, clean, and efficient remediation method. Three industrially used dyes, Methylene Blue, Eosin, and Rose Bengal, were selected as models of pollutants. Poly(acrylamide) (poly(AM)) and poly(acrylamide-co-acrylic acid) (poly(AM-co-AA)) networks were chosen as adsorbent materials (hydrogels). These polymers were synthesized by crosslinking the photopolymerization of their respective monomer(s) in an aqueous medium under exposure to UV light. Experimental adsorption measurements revealed substantially higher dye uptakes for poly(AM-co-AA) compared to poly(AM) hydrogels. In this report, a theoretical model based on docking simulations was applied to analyze the conformation of polymers and pollutants in order to investigate some aspects of the adsorption process. In particular, hydrogen and halogen interactions were studied. The presence of strong hydrogen bonding plays a crucial role in the retention of dyes, whereas halogen bonding has a small or negligible effect on adsorption. An evaluation of binding energies allowed us to obtain information about the degree of affinity between polymers and dyes. The number of rotatable bonds in the copolymer exceeds those of poly(AM),meaning that poly(AM-co-AA) is revealed to be more suitable for obtaining a high retention rate for pollutants. Full article
Show Figures

Figure 1

16 pages, 10240 KiB  
Article
Evaluation of the Physical Stability of Starch-Based Hydrogels Produced by High-Pressure Processing (HPP)
by Dominique Larrea-Wachtendorff, Vittoria Del Grosso and Giovanna Ferrari
Gels 2022, 8(3), 152; https://doi.org/10.3390/gels8030152 - 1 Mar 2022
Cited by 14 | Viewed by 4001
Abstract
Starch-based hydrogels are natural polymeric structures with high potential interest for food, cosmeceutical, and pharmaceutical applications. In this study, the physical stability of starch-based hydrogels produced via high-pressure processing (HPP) was evaluated using conventional and accelerated methods. For this purpose, conventional stability measurements, [...] Read more.
Starch-based hydrogels are natural polymeric structures with high potential interest for food, cosmeceutical, and pharmaceutical applications. In this study, the physical stability of starch-based hydrogels produced via high-pressure processing (HPP) was evaluated using conventional and accelerated methods. For this purpose, conventional stability measurements, namely swelling power, water activity, texture, and organoleptic properties, as well as microbiological analysis of rice, corn, wheat, and tapioca starch hydrogels, were determined at different time intervals during storage at 20 °C. Additionally, to assess the stability of these structures, accelerated tests based on temperature sweep tests and oscillatory rheological measurements, as well as temperature cycling tests, were performed. The experimental results demonstrated that the physical stability of starch-based HPP hydrogels was interdependently affected by the microorganisms’ action and starch retrogradation, leading to both organoleptic and texture modifications with marked reductions in swelling stability and firmness. It was concluded that tapioca starch hydrogels showed the lowest stability upon storage due to higher incidence of microbial spoilage. Accelerated tests allowed the good stability of HPP hydrogels to be predicted, evidencing good network strength and the ability to withstand temperature changes. Modifications of the rheological properties of corn, rice, and wheat hydrogels were only observed above 39 °C and at stress values 3 to 10 times higher than those necessary to modify commercial hydrogels. Moreover, structural changes to hydrogels after cycling tests were similar to those observed after 90 days of conventional storage. Data obtained in this work can be utilized to design specific storage conditions and product improvements. Moreover, the accelerated methods used in this study provided useful information, allowing the physical stability of starch-based hydrogels to be predicted. Full article
Show Figures

Graphical abstract

14 pages, 2919 KiB  
Article
Multivalent Allylammonium-Based Cross-Linkers for the Synthesis of Homogeneous, Highly Swelling Diallyldimethylammonium Chloride Hydrogels
by Tim B. Mrohs and Oliver Weichold
Gels 2022, 8(2), 100; https://doi.org/10.3390/gels8020100 - 8 Feb 2022
Cited by 5 | Viewed by 3233
Abstract
N,N’-methylenebisacrylamide (BIS) is a very popular cross-linker for the radical polymerisation in water. It is highly reactive but prone to alkaline hydrolysis and suffers from a low solubility. This study shows that with slow polymerising systems such as N, [...] Read more.
N,N’-methylenebisacrylamide (BIS) is a very popular cross-linker for the radical polymerisation in water. It is highly reactive but prone to alkaline hydrolysis and suffers from a low solubility. This study shows that with slow polymerising systems such as N,N-diallyldimethylammonium chloride, only inhomogeneous networks are formed. As a consequence, gels with very low cross-linking densities, i.e., high swelling capacities, disintegrate during the swelling test and firm, coherent gels are not accessible due to the solubility limit. A promising alternative are multivalent tetraallyl-based compounds, of which tetraallylammonium bromide (TAAB), N,N,N’,N’-tetraallylpiperazinium dibromide (TAPB) and N,N,N’,N’-tetraallyltrimethylene dipiperidine dibromide (TAMPB) are the subject of this study. With these, the cross-linking polymerisation appears to be statistical, as gels formed at low monomer conversion have essentially the same swelling properties as those formed at high conversions. This is not observed with BIS. However, gelation with the tetraallyl cross-linkers is much slower than with BIS and follows the order TAPB < TAMPB < TAAB, but the differences become significantly smaller with increasing content. At low contents, all three allow the preparation of gels with high swelling capacities of up to 360 g/g. Full article
Show Figures

Figure 1

17 pages, 6039 KiB  
Article
Non-Invasive Assessment of PVA-Borax Hydrogel Effectiveness in Removing Metal Corrosion Products on Stones by Portable NMR
by Valeria Stagno, Alessandro Ciccola, Roberta Curini, Paolo Postorino, Gabriele Favero and Silvia Capuani
Gels 2021, 7(4), 265; https://doi.org/10.3390/gels7040265 - 14 Dec 2021
Cited by 7 | Viewed by 3290
Abstract
The cleaning of buildings, statues, and artworks composed of stone materials from metal corrosion is an important topic in the cultural heritage field. In this work the cleaning effectiveness of a PVA-PEO-borax hydrogel in removing metal corrosion products from different porosity stones has [...] Read more.
The cleaning of buildings, statues, and artworks composed of stone materials from metal corrosion is an important topic in the cultural heritage field. In this work the cleaning effectiveness of a PVA-PEO-borax hydrogel in removing metal corrosion products from different porosity stones has been assessed by using a multidisciplinary and non-destructive approach based on relaxation times measurement by single-sided portable Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy—Energy Dispersive Spectroscopy (SEM-EDS), and Raman Spectroscopy. To this end, samples of two lithotypes, Travertine and Carrara marble, have been soiled by triggering acidic corrosion of some copper coins in contact with the stone surface. Then, a PVA-PEO-borax hydrogel was used to clean the stone surface. NMR data were collected in untreated, soiled with corrosion products, and hydrogel-cleaned samples. Raman spectroscopy was performed on PVA-PEO-borax hydrogel before and after cleaning of metal corrosion. Furthermore, the characterization of the dirty gel was obtained by SEM-EDS. The combination of NMR, SEM-EDS and Raman results suggests that the mechanism behind the hydrogel cleaning action is to trap heavy metal corrosion products, such as Cu2+ between adjacent boron ions cross-linked with PVA. Moreover, the PVA-PEO-borax hydrogel cleaning effectiveness depends on the stone porosity, being better in Carrara marble compared to Travertine. Full article
Show Figures

Figure 1

13 pages, 3802 KiB  
Article
New Hydrogel Network Based on Alginate and a Spiroacetal Copolymer
by Alina Elena Sandu, Loredana Elena Nita, Aurica P. Chiriac, Nita Tudorachi, Alina Gabriela Rusu and Daniela Pamfil
Gels 2021, 7(4), 241; https://doi.org/10.3390/gels7040241 - 27 Nov 2021
Cited by 5 | Viewed by 2257
Abstract
This study reports a strategy for developing a biohybrid complex based on a natural/synthetic polymer conjugate as a gel-type structure. Coupling synthetic polymers with natural compounds represents an important approach to generating gels with superior properties and with potential for biomedical applications. The [...] Read more.
This study reports a strategy for developing a biohybrid complex based on a natural/synthetic polymer conjugate as a gel-type structure. Coupling synthetic polymers with natural compounds represents an important approach to generating gels with superior properties and with potential for biomedical applications. The study presents the preparation of hybrid gels with tunable characteristics by using a spiroacetal polymer and alginate as co-partners in different ratios. The new network formation was tested, and the structure was confirmed by FTIR and SEM techniques. The physical properties of the new gels, namely their thermal stability and swelling behavior, were investigated. The study showed that the increase in alginate content caused a smooth increase in thermal stability due to the additional crosslinking bridges that appeared. Moreover, increasing the content of the synthetic polymer in the structure of the gel network ensures a slower release of carvacrol, the encapsulated bioactive compound. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research, Other

16 pages, 3114 KiB  
Review
Advances on Hydrogels for Oral Science Research
by Shengjia Ye, Bin Wei and Li Zeng
Gels 2022, 8(5), 302; https://doi.org/10.3390/gels8050302 - 15 May 2022
Cited by 11 | Viewed by 4380
Abstract
Hydrogels are biocompatible polymer systems, which have become a hotspot in biomedical research. As hydrogels mimic the structure of natural extracellular matrices, they are considered as good scaffold materials in the tissue engineering area for repairing dental pulp and periodontal damages. Combined with [...] Read more.
Hydrogels are biocompatible polymer systems, which have become a hotspot in biomedical research. As hydrogels mimic the structure of natural extracellular matrices, they are considered as good scaffold materials in the tissue engineering area for repairing dental pulp and periodontal damages. Combined with different kinds of stem cells and growth factors, various hydrogel complexes have played an optimistic role in endodontic and periodontal tissue engineering studies. Further, hydrogels exhibit biological effects in response to external stimuli, which results in hydrogels having a promising application in local drug delivery. This review summarized the advances of hydrogels in oral science research, in the hopes of providing a reference for future applications. Full article
Show Figures

Figure 1

Other

9 pages, 1143 KiB  
Brief Report
Hyaluronidase Enhances Targeting of Hydrogel-Encapsulated Anti-CTLA-4 to Tumor Draining Lymph Nodes and Improves Anti-Tumor Efficacy
by Airi Harui and Michael D. Roth
Gels 2022, 8(5), 284; https://doi.org/10.3390/gels8050284 - 3 May 2022
Cited by 4 | Viewed by 2057
Abstract
Immunotherapy targeting checkpoint inhibitors, such as CTLA-4 and/or PD-1, has emerged as a leading cancer therapy. While their combination produces superior efficacy compared to monotherapy, it also magnifies inflammatory and autoimmune toxicity that limits clinical utility. We previously reported that a peri-tumor injection [...] Read more.
Immunotherapy targeting checkpoint inhibitors, such as CTLA-4 and/or PD-1, has emerged as a leading cancer therapy. While their combination produces superior efficacy compared to monotherapy, it also magnifies inflammatory and autoimmune toxicity that limits clinical utility. We previously reported that a peri-tumor injection of low-dose hydrogel-encapsulated anti-CTLA-4 produced anti-tumor responses that were equal to, or better than, systemic dosing despite a >80% reduction in total dose. Injection of hydrogel-encapsulated anti-CTLA-4 was associated with low serum exposure and limited autoimmune toxicity, but still synergized with anti-PD-1. In this report, we employ live and ex vivo imaging to examine whether peri-tumor administration specifically targets anti-CTLA-4 to tumor-draining lymph nodes (TDLN) and whether the incorporation of hyaluronidase enhances this effect. Tumor-free survival analysis was also used to measure the impact of hyaluronidase on tumor response. Compared to systemic dosing, peri-tumor injection of hydrogel-encapsulated anti-CTLA-4/DyLight 800 resulted in preferential labeling of TDLN. Incorporating hyaluronidase within the hydrogel improved the rapidity, intensity, and duration of TDLN labeling and significantly improved tumor-free survival. We conclude that hydrogel-encapsulated anti-CTLA acts as a localized antibody reservoir and that inclusion of hyaluronidase optimizes the blockade of CTLA-4 in TDLN and thereby imparts superior anti-tumor immunity. Full article
Show Figures

Graphical abstract

Back to TopTop