Quantitative NMR and MRI Methods Applied for Foodstuffs

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Analytical Methods".

Deadline for manuscript submissions: closed (31 May 2025) | Viewed by 2826

Special Issue Editors


E-Mail Website
Guest Editor
Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
Interests: metabonomic studies; nuclear magnetic resonance; biomarkers; food chemistry; in vitro digestion; microbiota
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy
Interests: metabonomic studies; food biochemistry; in vitro digestion; foodomics; bioactive food components; antioxidants; (poly)phenols; n−3 fatty acids; functional foods; cell culture; nutrigenomics

Special Issue Information

Dear Colleagues,

I am delighted to inform you about a new Special Issue on “Quantitative NMR and MRI Methods Applied for Foodstuffs”. This Special Issue will provide a platform for experts to publish research on the most recent and advanced applications of quantitative NMR (qNMR) and magnetic resonance imaging q(MRI) methods in the foods field. qNMR and MRI methods have found several different applications in the analysis and characterization of foodstuffs. These techniques offer non-destructive, non-invasive, and rapid analysis capabilities, becoming valuable tools for the assessment of food quality and authenticity, as well as for the evaluation of their nutritional values. Information on MR images and spectra can be manipulated and used to determine food components, such as water, fats, proteins, and carbohydrates. At the same time, they can be exploited to assess the distribution of moisture, fat, and other components within food matrices, providing insights into texture, homogeneity, and overall quality. Thus, this Special Issue is open to original works and reviews that explore the application of qNMR and MRI in the field of food analysis, including topics such as in vitro digestion.

Dr. Gianfranco Picone
Dr. Francesca Danesi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food authenticity
  • food quality
  • qNMR spectroscopy
  • MR imaging
  • metabolomics
  • water mobility and binding
  • green chemistry
  • in vitro digestion
  • bioactive compounds

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 1430 KiB  
Article
Contributions to Estimating the Water-Holding Capacity in Fresh Pork Hams Using NMR Relaxometry
by Víctor Remiro, María Isabel Cambero, María Dolores Romero-de-Ávila, David Castejón, José Segura and María Encarnación Fernández-Valle
Foods 2025, 14(13), 2329; https://doi.org/10.3390/foods14132329 - 30 Jun 2025
Viewed by 184
Abstract
Determining the technological quality of fresh meat pieces is essential in the meat industry to ensure the production of high-quality products. For this purpose, nuclear magnetic resonance (NMR) is a non-destructive and non-invasive technique that appears as an alternative to traditional methodologies. The [...] Read more.
Determining the technological quality of fresh meat pieces is essential in the meat industry to ensure the production of high-quality products. For this purpose, nuclear magnetic resonance (NMR) is a non-destructive and non-invasive technique that appears as an alternative to traditional methodologies. The objective of this work is to determine the potential of magnetic resonance imaging (MRI) and time-domain (TD-NMR) relaxometry for determining the physicochemical characterization of fresh hams with different industrial destinations (both fresh and cured products, such as dry-cured ham). For this study, the biceps femoris, semimembranosus, and semitendinosus muscles of 20 fresh hind legs from white pigs, classified into four categories according to their fat content, were analyzed. The semitendinosus muscle was selected as a model, and positive and negative correlations were obtained between different physicochemical parameters and the longitudinal (T1) and transverse (T2) relaxation times obtained by MRI and TD-NMR. Regression models using T1 and T2 were also developed to predict the muscle water-holding capacity (WHC) and drip loss, using high, medium, and low magnetic field NMR (R2 > 0.80). Therefore, MRI and TD-NMR could be considered as highly suitable and accurate non-destructive techniques for the WHC determination in the meat industry. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

15 pages, 5144 KiB  
Article
Insights into the Flavor Profile of Yak Jerky from Different Muscles Based on Electronic Nose, Electronic Tongue, Gas Chromatography–Mass Spectrometry and Gas Chromatography–Ion Mobility Spectrometry
by Bingde Zhou, Xin Zhao, Luca Laghi, Xiaole Jiang, Junni Tang, Xin Du, Chenglin Zhu and Gianfranco Picone
Foods 2024, 13(18), 2911; https://doi.org/10.3390/foods13182911 - 14 Sep 2024
Cited by 6 | Viewed by 1760
Abstract
It is well known that different muscles of yak exhibit distinctive characteristics, such as muscle fibers and metabolomic profiles. We hypothesized that different muscles could alter the flavor profile of yak jerky. Therefore, the objective of this study was to investigate the differences [...] Read more.
It is well known that different muscles of yak exhibit distinctive characteristics, such as muscle fibers and metabolomic profiles. We hypothesized that different muscles could alter the flavor profile of yak jerky. Therefore, the objective of this study was to investigate the differences in flavor profiles of yak jerky produced by longissimus thoracis (LT), triceps brachii (TB) and biceps femoris (BF) through electronic nose (E-nose), electronic tongue (E-tongue), gas chromatography–mass spectrometry (GC-MS) and gas chromatography–ion mobility spectrometry (GC-IMS). The results indicated that different muscles played an important role on the flavor profile of yak jerky. And E-nose and E-tongue could effectively discriminate between yak jerky produced by LT, TB and BF from aroma and taste points of view, respectively. In particular, the LT group exhibited significantly higher response values for ANS (sweetness) and NMS (umami) compared to the BF and TB groups. A total of 65 and 47 volatile compounds were characterized in yak jerky by GC-MS and GC-IMS, respectively. A principal component analysis (PCA) model and robust principal component analysis (rPCA) model could effectively discriminate between the aroma profiles of the LT, TB and BF groups. Ten molecules could be considered potential markers for yak jerky produced by different muscles, filtered based on the criteria of relative odor activity values (ROAV) > 1, p < 0.05, and VIP > 1, namely 1-octen-3-ol, eucalyptol, isovaleraldehyde, 3-carene, D-limonene, γ-terpinene, hexanal-D, hexanal-M, 3-hydroxy-2-butanone-M and ethyl formate. Sensory evaluation demonstrated that the yak jerky produced by LT exhibited superior quality in comparison to that produced by BF and TB, mainly pertaining to lower levels of tenderness and higher color, taste and aroma levels. This study could help to understand the specific contribution of different muscles to the aroma profile of yak jerky and provide a scientific basis for improving the quality of yak jerky. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

Review

Jump to: Research

31 pages, 3723 KiB  
Review
Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies
by Chandra Prakash and Rohit Mahar
Foods 2025, 14(14), 2417; https://doi.org/10.3390/foods14142417 - 9 Jul 2025
Viewed by 241
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR [...] Read more.
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR is widely applied for precise quantification of metabolites, authentication of food products, and monitoring of food quality. Low-field 1H-NMR relaxometry is an important technique for investigating the most abundant components of intact foodstuffs based on relaxation times and amplitude of the NMR signals. In particular, information on water compartments, diffusion, and movement can be obtained by detecting proton signals because of H2O in foodstuffs. Saffron adulterations with calendula, safflower, turmeric, sandalwood, and tartrazine have been analyzed using benchtop NMR, an alternative to the high-field NMR approach. The fraudulent addition of Robusta to Arabica coffee was investigated by 1H-NMR Spectroscopy and the marker of Robusta coffee can be detected in the 1H-NMR spectrum. MRI images can be a reliable tool for appreciating morphological differences in vegetables and fruits. In kiwifruit, the effects of water loss and the states of water were investigated using MRI. It provides informative images regarding the spin density distribution of water molecules and the relationship between water and cellular tissues. 1H-NMR spectra of aqueous extract of kiwifruits affected by elephantiasis show a higher number of small oligosaccharides than healthy fruits do. One of the frauds that has been detected in the olive oil sector reflects the addition of hazelnut oils to olive oils. However, using the NMR methodology, it is possible to distinguish the two types of oils, since, in hazelnut oils, linolenic fatty chains and squalene are absent, which is also indicated by the 1H-NMR spectrum. NMR has been applied to detect milk adulterations, such as bovine milk being spiked with known levels of whey, urea, synthetic urine, and synthetic milk. In particular, T2 relaxation time has been found to be significantly affected by adulteration as it increases with adulterant percentage. The 1H spectrum of honey samples from two botanical species shows the presence of signals due to the specific markers of two botanical species. NMR generates large datasets due to the complexity of food matrices and, to deal with this, chemometrics (multivariate analysis) can be applied to monitor the changes in the constituents of foodstuffs, assess the self-life, and determine the effects of storage conditions. Multivariate analysis could help in managing and interpreting complex NMR data by reducing dimensionality and identifying patterns. NMR spectroscopy followed by multivariate analysis can be channelized for evaluating the nutritional profile of food products by quantifying vitamins, sugars, fatty acids, amino acids, and other nutrients. In this review, we summarize the importance of NMR spectroscopy in chemical profiling and quality assessment of food products employing magnetic resonance technologies and multivariate statistical analysis. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

Back to TopTop