Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies
Abstract
1. Introduction
2. Extraction Methods
3. Sample Preparation for NMR/MRS and MRI Analysis
4. Data Acquisition in NMR and MRI
5. Statistical Analysis of NMR Data
6. Applications of Magnetic Resonance in Food Analysis
7. Discussion
7.1. Advantages of Magnetic Resonance Techniques in Foodstuffs Analysis
7.2. Disadvantages of Magnetic Resonance Techniques in Foodstuffs Analysis
7.3. Limitations of NMR Applications in Food Science
Aspect | NMR Spectroscopy | NIR Spectroscopy |
---|---|---|
Cost | High initial cost [144]. | Generally lower cost instruments; more affordable for routine use [159]. |
Operation complexity | Requires specialized training for complex data analysis [160]. | Easier operation with minimal sample preparation and rapid results [161]. |
Data Processing | Complex NMR spectra of foodstuffs needing chemometrics with high expertise [162]. | Uses multivariate analysis, but spectra are simpler to interpret [161]. |
Sensitivity and Specificity | High molecular specificity; distinguishes molecular structures and bonds precisely [163]. | Provides chemical fingerprints but less molecular specificity and relies on calibration models and standards [164] |
Sample Preparation | Usually requires minimal sample preparation and is non-destructive for solid/liquid samples [165]. | Minimal-to-no sample preparation and non-destructive [166]. |
Applications | Quantitative and qualitative analysis of complex food matrices, origin, adulteration, and lipid profiling [167]. | Rapid quality control, moisture, fat, protein, sugar content, and adulteration screening [168]. |
Portability | Benchtop models are available but generally less portable [169]. | Portable handheld NIR devices are widely available [170]. |
7.4. Potential Opportunities and Future Prospects in NMR/MRI for Food Analysis
- •
- Development of NMR-Based Hyphenated Technology:
- •
- Technological Development in Portable and Benchtop NMR Devices:
- •
- Application in Food Nanotechnology:
- •
- Compressed Sensing and Digital Integration with NMR/MRI:
- •
- NMR and MRI Databases for Rapid Analysis:
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simpson, A.J.; Simpson, M.J.; Soong, R. Nuclear Magnetic Resonance Spectroscopy and Its Key Role in Environmental Research. Environ. Sci. Technol. 2012, 46, 11488–11496. [Google Scholar] [CrossRef]
- Moreira Borges, R.; De Assis Ferreira, G.; Martins Campos, M.; Magno Teixeira, A.; Das Neves Costa, F.; Oliveira Das Chagas, F.; Colonna, M. NMR As a Tool for Compound Identification in Mixtures. Phytochem. Anal. 2023, 34, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Gerothanassis, I.P.; Troganis, A.; Exarchou, V.; Barbarossou, K. Nuclear Magnetic Resonance (NMR) Spectroscopy: Basic Principles and Phenomena, and Their Applications to Chemistry, Biology and Medicine. Chem. Educ. Res. Pract. 2002, 3, 229–252. [Google Scholar] [CrossRef]
- Tognarelli, J.M.; Dawood, M.; Shariff, M.I.F.; Grover, V.P.B.; Crossey, M.M.E.; Cox, I.J.; Taylor-Robinson, S.D.; McPhail, M.J.W. Magnetic Resonance Spectroscopy: Principles and Techniques: Lessons for Clinicians. J. Clin. Exp. Hepatol. 2015, 5, 320–328. [Google Scholar] [CrossRef]
- Gan, Z.; Kwak, H.-T.; Bird, M.; Cross, T.; Gor’kov, P.; Brey, W.; Shetty, K. High-Field NMR Using Resistive and Hybrid Magnets. J. Magn. Reson. 2008, 191, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Vujović, Ž.Đ. Magnets, Gradients, and RF Coils of MR Scanners. Int. J. Phys. Res. Appl. 2023, 6, 128–135. [Google Scholar] [CrossRef]
- Grage, H.; Akke, M. A Statistical Analysis of NMR Spectrometer Noise. J. Magn. Reson. 2003, 162, 176–188. [Google Scholar] [CrossRef]
- Sethi, N.; Mahar, R.; Shukla, S.K.; Kumar, A.; Sinha, N. A Novel Approach for Testing the Teratogenic Potential of Chemicals on the Platform of Metabolomics: Studies Employing HR-MAS Nuclear Magnetic Resonance Spectroscopy. RSC Adv. 2015, 5, 26027–26039. [Google Scholar] [CrossRef]
- Tilgner, M.; Vater, T.S.; Habbel, P.; Cheng, L.L. High-Resolution Magic Angle Spinning (HRMAS) NMR Methods in Metabolomics. In NMR-Based Metabolomics; Gowda, G.A.N., Raftery, D., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; Volume 2037, pp. 49–67. ISBN 978-1-4939-9689-6. [Google Scholar]
- Li, X.; Hu, K. Quantitative NMR Studies of Multiple Compound Mixtures. In Annual Reports on NMR Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2017; Volume 90, pp. 85–143. ISBN 978-0-12-812009-5. [Google Scholar]
- Mannina, L.; Sobolev, A.P.; Viel, S. Liquid State 1H High Field NMR in Food Analysis. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 66, 1–39. [Google Scholar] [CrossRef]
- Mannina, L.; D’Imperio, M.; Capitani, D.; Rezzi, S.; Guillou, C.; Mavromoustakos, T.; Vilchez, M.D.M.; Fernández, A.H.; Thomas, F.; Aparicio, R. 1H NMR-Based Protocol for the Detection of Adulterations of Refined Olive Oil with Refined Hazelnut Oil. J. Agric. Food Chem. 2009, 57, 11550–11556. [Google Scholar] [CrossRef]
- Sobolev, A.P.; Ingallina, C.; Spano, M.; Di Matteo, G.; Mannina, L. NMR-Based Approaches in the Study of Foods. Molecules 2022, 27, 7906. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.M.; Pereira-Filho, E.R.; Colnago, L.A. Detection and Quantification of Milk Adulteration Using Time Domain Nuclear Magnetic Resonance (TD-NMR). Microchem. J. 2016, 124, 15–19. [Google Scholar] [CrossRef]
- Mao, J.; Kong, X.; Schmidt-Rohr, K.; Pignatello, J.J.; Perdue, E.M. Advanced Solid-State NMR Characterization of Marine Dissolved Organic Matter Isolated Using the Coupled Reverse Osmosis/Electrodialysis Method. Environ. Sci. Technol. 2012, 46, 5806–5814. [Google Scholar] [CrossRef]
- Khodov, I.A.; Musabirova, G.S.; Klochkov, V.V.; Karataeva, F.K.; Huster, D.; Scheidt, H.A. Structural Details on the Interaction of Fenamates with Lipid Membranes. J. Mol. Liq. 2022, 367, 120502. [Google Scholar] [CrossRef]
- Van Beek, T.A. Low-field Benchtop NMR Spectroscopy: Status and Prospects in Natural Product Analysis†. Phytochem. Anal. 2021, 32, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Capitani, D.; Sobolev, A.P.; Di Tullio, V.; Mannina, L.; Proietti, N. Portable NMR in Food Analysis. Chem. Biol. Technol. Agric. 2017, 4, 17. [Google Scholar] [CrossRef]
- Gunning, Y.; Davies, K.S.; Kemsley, E.K. Authentication of Saffron Using 60 MHz 1H NMR Spectroscopy. Food Chem. 2023, 404, 134649. [Google Scholar] [CrossRef]
- Lin, Y.-T.; We, Y.-L.; Kao, Y.-M.; Tseng, S.-H.; Wang, D.-Y.; Chen, S.-Y. Authentication of Coffee Blends by 16-O-Methylcafestol Quantification Using NMR Spectroscopy. Processes 2023, 11, 871. [Google Scholar] [CrossRef]
- Michal, C.A. Low-Cost Low-Field NMR and MRI: Instrumentation and Applications. J. Magn. Reson. 2020, 319, 106800. [Google Scholar] [CrossRef]
- Grover, V.P.B.; Tognarelli, J.M.; Crossey, M.M.E.; Cox, I.J.; Taylor-Robinson, S.D.; McPhail, M.J.W. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J. Clin. Exp. Hepatol. 2015, 5, 246–255. [Google Scholar] [CrossRef]
- Batool, S.; Mahar, R.; Badar, F.; Tetmeyer, A.; Xia, Y. Quantitative µMRI and PLM Study of Rabbit Humeral and Femoral Head Cartilage at Sub-10µm Resolutions. J. Orthop. Res. 2019, 38, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Mahar, R.; Batool, S.; Badar, F.; Xia, Y. Quantitative Measurement of T2, T1ρ and T1 Relaxation Times in Articular Cartilage and Cartilage-Bone Interface by SE and UTE Imaging at Microscopic Resolution. J. Magn. Reson. 2018, 297, 76–85. [Google Scholar] [CrossRef]
- Ebrahimnejad, H.; Ebrahimnejad, H.; Salajegheh, A.; Barghi, H. Use of Magnetic Resonance Imaging in Food Quality Control: A Review. J. Biomed. Phys. Eng. 2018, 8, 127–132. [Google Scholar] [PubMed]
- Makihara, K.; Kunieda, K.; Yamada, S.; Yamaguchi, M.; Nakamura, T.; Terada, Y. High-Resolution MRI for Human Embryos with Isotropic 10 Μm Resolution at 9.4 T. J. Magn. Reson. 2023, 355, 107545. [Google Scholar] [CrossRef]
- Van As, H.; Van Duynhoven, J. MRI of Plants and Foods. J. Magn. Reson. 2013, 229, 25–34. [Google Scholar] [CrossRef]
- Patel, K.K.; Khan, M.A.; Kar, A. Recent Developments in Applications of MRI Techniques for Foods and Agricultural Produce—An Overview. J. Food Sci. Technol. 2015, 52, 1–26. [Google Scholar] [CrossRef]
- Taglienti, A.; Ritota, M.; Cozzolino, S.; Sequi, P.; Valentini, M.; Conte, L.; Terlizzi, M. Mri Characterization of New Kiwifruit Selections. Acta Hortic. 2011, 913, 145–156. [Google Scholar] [CrossRef]
- Bharti, S.K.; Bhatia, A.; Tewari, S.K.; Sidhu, O.P.; Roy, R. Application of HR-MAS NMR Spectroscopy for Studying Chemotype Variations of Withania somnifera (L.) Dunal. Magn. Reson. Chem. 2011, 49, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Sakellariou, D.; Meriles, C.A.; Martin, R.W.; Pines, A. NMR in Rotating Magnetic Fields: Magic-Angle Field Spinning. Magn. Reson. Imaging 2005, 23, 295–299. [Google Scholar] [CrossRef]
- Power, W.P. High Resolution Magic Angle Spinning—Applications to Solid Phase Synthetic Systems and Other Semi-Solids. In Annual Reports on NMR Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2003; Volume 51, pp. 261–295. ISBN 978-0-12-505451-5. [Google Scholar]
- Renault, M.; Shintu, L.; Piotto, M.; Caldarelli, S. Slow-Spinning Low-Sideband HR-MAS NMR Spectroscopy: Delicate Analysis of Biological Samples. Sci. Rep. 2013, 3, 3349. [Google Scholar] [CrossRef]
- Tampieri, A.; Szabó, M.; Medina, F.; Gulyás, H. A Brief Introduction to the Basics of NMR Spectroscopy and Selected Examples of Its Applications to Materials Characterization. Phys. Sci. Rev. 2021, 6, 20190086. [Google Scholar] [CrossRef]
- Mazzei, P.; Piccolo, A. HRMAS NMR Spectroscopy Applications in Agriculture. Chem. Biol. Technol. Agric. 2017, 4, 11. [Google Scholar] [CrossRef]
- Mengual-Macenlle, N.; Marcos, P.J.; Golpe, R.; González-Rivas, D. Multivariate Analysis in Thoracic Research. J. Thorac. Dis. 2015, 7, E2–E6. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal Component Analysis. WIREs Comput. Stats 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Naes, T.; Martens, H. Comparison of Prediction Methods for Multicollinear Data. Commun. Stat. Simul. Comput. 1985, 14, 545–576. [Google Scholar] [CrossRef]
- Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L.; El Hadrami, E.M. A Comparative Study between a New Method and Other Machine Learning Algorithms for Soil Organic Carbon and Total Nitrogen Prediction Using near Infrared Spectroscopy. Chemom. Intell. Lab. Syst. 2019, 195, 103873. [Google Scholar] [CrossRef]
- Izenman, A.J. Linear Discriminant Analysis. In Modern Multivariate Statistical Techniques; Springer Texts in Statistics; Springer: New York, NY, USA, 2013; pp. 237–280. ISBN 978-0-387-78188-4. [Google Scholar]
- Verma, J.P. Sports Research with Analytical Solution Using SPSS®, 1st ed.; Wiley: Hoboken, NJ, USA, 2016; ISBN 978-1-119-20671-2. [Google Scholar]
- Fahr, A. Discriminant Analysis. In The International Encyclopedia of Communication; Donsbach, W., Ed.; Wiley: Hoboken, NJ, USA, 2008; ISBN 978-1-4051-3199-5. [Google Scholar]
- Lee, D.; Kim, M.; Kim, B.H.; Ahn, S. Identification of the Geographical Origin of Asian Red Pepper (Capsicum annuum L.) Powders Using 1H NMR Spectroscopy. Bull. Korean Chem. Soc. 2020, 41, 317–322. [Google Scholar] [CrossRef]
- Verma, A.; Parihar, R.; Baishya, B. Identification of Metabolites in Coriander Seeds (Coriandrum sativum L.) Aided by Ultrahigh Resolution Total Correlation NMR Spectroscopy. Magn. Reson. Chem. 2019, 57, 304–316. [Google Scholar] [CrossRef]
- Girelli, C.R.; Del Coco, L.; Zelasco, S.; Salimonti, A.; Conforti, F.L.; Biagianti, A.; Barbini, D.; Fanizzi, F.P. Traceability of “Tuscan PGI” Extra Virgin Olive Oils by 1H NMR Metabolic Profiles Collection and Analysis. Metabolites 2018, 8, 60. [Google Scholar] [CrossRef]
- Ghosh Biswas, R.; Bermel, W.; Jenne, A.; Soong, R.; Simpson, M.J.; Simpson, A.J. HR-MAS DREAMTIME NMR for Slow Spinning Ex. Vivo and in Vivo Samples. Anal. Chem. 2023, 95, 17054–17063. [Google Scholar] [CrossRef]
- Fadzillah, N.A.; Che Man, Y.B.; Rohman, A.; Rosman, A.S.; Ismail, A.; Mustafa, S.; Khatib, A. Detection of Butter Adulteration with Lard by Employing 1H-NMR Spectroscopy and Multivariate Data Analysis. J. Oleo Sci. 2015, 64, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Godelmann, R.; Fang, F.; Humpfer, E.; Schütz, B.; Bansbach, M.; Schäfer, H.; Spraul, M. Targeted and Nontargeted Wine Analysis by 1H NMR Spectroscopy Combined with Multivariate Statistical Analysis. Differentiation of Important Parameters: Grape Variety, Geographical Origin, Year of Vintage. J. Agric. Food Chem. 2013, 61, 5610–5619. [Google Scholar] [CrossRef]
- Ritota, M.; Marini, F.; Sequi, P.; Valentini, M. Metabolomic Characterization of Italian Sweet Pepper (Capsicum annum L.) by Means of HRMAS-NMR Spectroscopy and Multivariate Analysis. J. Agric. Food Chem. 2010, 58, 9675–9684. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, K.; Wang, X.; Tan, M. Detection of Sesame Oil Adulteration Using Low-Field Nuclear Magnetic Resonance and Chemometrics. Int. J. Food Eng. 2019, 15, 20180349. [Google Scholar] [CrossRef]
- Shi, T.; Zhu, M.; Chen, Y.; Yan, X.; Chen, Q.; Wu, X.; Lin, J.; Xie, M. 1H NMR Combined with Chemometrics for the Rapid Detection of Adulteration in Camellia Oils. Food Chem. 2018, 242, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Schott, J.R.; Gerace, A.; Woodcock, C.E.; Wang, S.; Zhu, Z.; Wynne, R.H.; Blinn, C.E. The Impact of Improved Signal-to-Noise Ratios on Algorithm Performance: Case Studies for Landsat Class Instruments. Remote Sens. Environ. 2016, 185, 37–45. [Google Scholar] [CrossRef]
- Torres, A.M.; Price, W.S. Common Problems and Artifacts Encountered in Solution-state NMR Experiments. Concepts Magn. Reson. 2016, 45A, e21387. [Google Scholar] [CrossRef]
- Ionin, B.I.; Ershov, B.A. The Fundamentals of NMR Spectroscopy. In NMR Spectroscopy in Organic Chemistry; Springer: Boston, MA, USA, 1970; pp. 1–59. ISBN 978-1-4684-1787-6. [Google Scholar]
- Ben-Tal, Y.; Boaler, P.J.; Dale, H.J.A.; Dooley, R.E.; Fohn, N.A.; Gao, Y.; García-Domínguez, A.; Grant, K.M.; Hall, A.M.R.; Hayes, H.L.D.; et al. Mechanistic Analysis by NMR Spectroscopy: A Users Guide. Prog. Nucl. Magn. Reson. Spectrosc. 2022, 129, 28–106. [Google Scholar] [CrossRef]
- Bojorquez, J.Z.; Bricq, S.; Acquitter, C.; Brunotte, F.; Walker, P.M.; Lalande, A. What Are Normal Relaxation Times of Tissues at 3 T? Magn. Reson. Imaging 2017, 35, 69–80. [Google Scholar] [CrossRef]
- McRobbie, D.W. Fundamentals of MR Imaging. In Comprehensive Biomedical Physics; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–19. ISBN 978-0-444-53633-4. [Google Scholar]
- Van Steenkiste, G.; Jeurissen, B.; Veraart, J.; Den Dekker, A.J.; Parizel, P.M.; Poot, D.H.J.; Sijbers, J. Super-resolution Reconstruction of Diffusion Parameters from Diffusion-weighted Images with Different Slice Orientations. Magn. Reson. Med. 2016, 75, 181–195. [Google Scholar] [CrossRef]
- Schmitt, C.; Bastek, T.; Stelzer, A.; Schneider, T.; Fischer, M.; Hackl, T. Detection of Peanut Adulteration in Food Samples by Nuclear Magnetic Resonance Spectroscopy. J. Agric. Food Chem. 2020, 68, 14364–14373. [Google Scholar] [CrossRef] [PubMed]
- Šmejkalová, D.; Piccolo, A. High-Power Gradient Diffusion NMR Spectroscopy for the Rapid Assessment of Extra-Virgin Olive Oil Adulteration. Food Chem. 2010, 118, 153–158. [Google Scholar] [CrossRef]
- Bertelli, D.; Lolli, M.; Papotti, G.; Bortolotti, L.; Serra, G.; Plessi, M. Detection of Honey Adulteration by Sugar Syrups Using One-Dimensional and Two-Dimensional High-Resolution Nuclear Magnetic Resonance. J. Agric. Food Chem. 2010, 58, 8495–8501. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Labib, R.M.; Noleto, C.; Porzel, A.; Wessjohann, L.A. NMR Approach for the Authentication of 10 Cinnamon Spice Accessions Analyzed via Chemometric Tools. LWT 2018, 90, 491–498. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, Y.; Xia, F.; Shen, G.; Feng, J. An Expert System Based on 1H NMR Spectroscopy for Quality Evaluation and Adulteration Identification of Edible Oils. J. Food Compos. Anal. 2019, 84, 103316. [Google Scholar] [CrossRef]
- Ates, E.G.; Domenici, V.; Florek-Wojciechowska, M.; Gradišek, A.; Kruk, D.; Maltar-Strmečki, N.; Oztop, M.; Ozvural, E.B.; Rollet, A.-L. Field-Dependent NMR Relaxometry for Food Science: Applications and Perspectives. Trends Food Sci. Technol. 2021, 110, 513–524. [Google Scholar] [CrossRef]
- Bonny, J.-M.; Renou, J.-P. Water Diffusion Features as Indicators of Muscle Structure Ex Vivo. Magn. Reson. Imaging 2002, 20, 395–400. [Google Scholar] [CrossRef]
- Damez, J.-L.; Clerjon, S. Quantifying and Predicting Meat and Meat Products Quality Attributes Using Electromagnetic Waves: An Overview. Meat Sci. 2013, 95, 879–896. [Google Scholar] [CrossRef]
- Yang, D.; Wu, G.; Li, P.; Qi, X.; Zhang, H.; Wang, X.; Jin, Q. The Effect of Fatty Acid Composition on the Oil Absorption Behavior and Surface Morphology of Fried Potato Sticks via LF-NMR, MRI, and SEM. Food Chem. X 2020, 7, 100095. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahmad, N.; Amir, M.; Aljishi, F.; Alamer, M.H.; Al-Shaban, H.R.; Alsadah, Z.A.; Alsultan, B.M.; Aldawood, N.A.; Chathoth, S.; et al. Quality Variation and Standardization of Black Pepper (Piper nigrum): A Comparative Geographical Evaluation Based on Instrumental and Metabolomics Analysis. Biomed. Chromatogr. 2020, 34, e4772. [Google Scholar] [CrossRef]
- Fan, S.; Zhong, Q.; Fauhl-Hassek, C.; Pfister, M.K.-H.; Horn, B.; Huang, Z. Classification of Chinese Wine Varieties Using 1H NMR Spectroscopy Combined with Multivariate Statistical Analysis. Food Control 2018, 88, 113–122. [Google Scholar] [CrossRef]
- Guimarães, C.C.; Assis, C.; Simeone, M.L.F.; Sena, M.M. Use of Near-Infrared Spectroscopy, Partial Least-Squares, and Ordered Predictors Selection to Predict Four Quality Parameters of Sweet Sorghum Juice Used to Produce Bioethanol. Energy Fuels 2016, 30, 4137–4144. [Google Scholar] [CrossRef]
- Santos, P.M.; Pereira-Filho, E.R.; Rodriguez-Saona, L.E. Application of Hand-Held and Portable Infrared Spectrometers in Bovine Milk Analysis. J. Agric. Food Chem. 2013, 61, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K. Understanding One-Way ANOVA Using Conceptual Figures. Korean J. Anesth. 2017, 70, 22. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yu, Z.; Zhu, D.; Meng, X.; Pang, X.; Liu, Y.; Frew, R.; Chen, H.; Chen, G. The Application of NMR-based Milk Metabolite Analysis in Milk Authenticity Identification. J. Sci. Food Agric. 2017, 97, 2875–2882. [Google Scholar] [CrossRef]
- Triba, M.N.; Le Moyec, L.; Amathieu, R.; Goossens, C.; Bouchemal, N.; Nahon, P.; Rutledge, D.N.; Savarin, P. PLS/OPLS Models in Metabolomics: The Impact of Permutation of Dataset Rows on the K-Fold Cross-Validation Quality Parameters. Mol. BioSyst. 2015, 11, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Boccard, J.; Rutledge, D.N. A Consensus Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) Strategy for Multiblock Omics Data Fusion. Anal. Chim. Acta 2013, 769, 30–39. [Google Scholar] [CrossRef]
- Worley, B.; Powers, R. PCA as a Practical Indicator of OPLS-DA Model Reliability. CMB 2016, 4, 97–103. [Google Scholar] [CrossRef]
- Amorim, T.L.; Duarte, L.M.; Granato, Á.S.; De Oliveira, M.A.L.; Amarante, G.W.; De La Fuente, M.A.; Gómez-Cortés, P. Screening Method for Determination of C18:1 Trans Fatty Acids Positional Isomers in Chocolate by 1H NMR and Chemometrics. LWT 2020, 131, 109689. [Google Scholar] [CrossRef]
- Spiteri, C.; Lia, F.; Farrugia, C. Determination of the Geographical Origin of Maltese Honey Using 1H NMR Fingerprinting. Foods 2020, 9, 1455. [Google Scholar] [CrossRef]
- Kaltenbach, K.H.; Kuballa, T.; Schröder, U.; Fritsche, J.; Bunzel, M.; Haase, I. Evaluation of NMR-Based Strategies to Differentiate Fresh from Frozen-Thawed Fish Supported by Multivariate Data Analysis. Eur. Food Res. Technol. 2024, 250, 239–251. [Google Scholar] [CrossRef]
- Guitton, J.; Gavotto, F.; Cros-Perrial, E.; Jordheim, L.P.; Machon, C. A Proposed Methodology to Deal with the Impact of In Vitro Cellular Matrix on the Analytical Performances of a Targeted Metabolomic LC-HRMS Method. Int. J. Mol. Sci. 2023, 24, 3770. [Google Scholar] [CrossRef]
- Karaman, I.; Climaco Pinto, R.; Graça, G. Metabolomics Data Preprocessing: From Raw Data to Features for Statistical Analysis. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 82, pp. 197–225. ISBN 978-0-444-64044-4. [Google Scholar]
- Sun, J.; Xia, Y. Pretreating and Normalizing Metabolomics Data for Statistical Analysis. Genes Dis. 2024, 11, 100979. [Google Scholar] [CrossRef]
- Jellema, R.H. Variable Shift and Alignment. In Comprehensive Chemometrics; Elsevier: Amsterdam, The Netherlands, 2009; pp. 85–108. ISBN 978-0-444-52701-1. [Google Scholar]
- Craig, A.; Cloarec, O.; Holmes, E.; Nicholson, J.K.; Lindon, J.C. Scaling and Normalization Effects in NMR Spectroscopic Metabonomic Data Sets. Anal. Chem. 2006, 78, 2262–2267. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.A.A.; Magalhães, A.; Ferreira, M.M.C. Optimized Bucketing for NMR Spectra: Three Case Studies. Chemom. Intell. Lab. Syst. 2013, 122, 93–102. [Google Scholar] [CrossRef]
- Simoneau, C.; McCarthy, M.J.; German, J.B. Magnetic Resonance Imaging and Spectroscopy for Food Systems. Food Res. Int. 1993, 26, 387–398. [Google Scholar] [CrossRef]
- Wang, X.; Geng, L.; Xie, J.; Qian, Y.-F. Relationship Between Water Migration and Quality Changes of Yellowfin Tuna (Thunnus albacares) During Storage at 0°C and 4°C by LF-NMR. J. Aquat. Food Prod. Technol. 2018, 27, 35–47. [Google Scholar] [CrossRef]
- Zhang, Q.; Saleh, A.S.M.; Shen, Q. Discrimination of Edible Vegetable Oil Adulteration with Used Frying Oil by Low Field Nuclear Magnetic Resonance. Food Bioprocess. Technol. 2013, 6, 2562–2570. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Liu, C.; Liu, C. Application of LF-NMR to the Characterization of Camellia Oil-Loaded Pickering Emulsion Fabricated by Soy Protein Isolate. Food Hydrocoll. 2021, 112, 106329. [Google Scholar] [CrossRef]
- Bertram, H.C.; Ersen, H.J. Applications of NMR in Meat Science. In Annual Reports on NMR Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2004; Volume 53, pp. 157–202. ISBN 978-0-12-505453-9. [Google Scholar]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of Water-Holding Capacity of Meat: The Role of Postmortem Biochemical and Structural Changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Zhou, G.; Xu, X.; Qi, J.; Shi, P.; Xia, T. Meat Quality and Cooking Attributes of Thawed Pork with Different Low Field NMR T21. Meat Sci. 2012, 92, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, S.; Mayer, S.; Sproll, C.; Lachenmeier, D.; Kuballa, T. Authentication of Saffron (Crocus sativus L.) Using 1H Nuclear Magnetic Resonance (NMR) Spectroscopy. In Proceedings of the XIII International Conference on the Applications of Magnetic Resonance in Food Science; IM Publications: Chichester, UK, 2016; p. 13. ISBN 978-1-906715-24-3. [Google Scholar]
- Rachineni, K.; Rao Kakita, V.M.; Awasthi, N.P.; Shirke, V.S.; Hosur, R.V.; Chandra Shukla, S. Identifying Type of Sugar Adulterants in Honey: Combined Application of NMR Spectroscopy and Supervised Machine Learning Classification. Curr. Res. Food Sci. 2022, 5, 272–277. [Google Scholar] [CrossRef]
- Richardson, P.I.C.; Muhamadali, H.; Lei, Y.; Golovanov, A.P.; Ellis, D.I.; Goodacre, R. Detection of the Adulteration of Fresh Coconut Water via NMR Spectroscopy and Chemometrics. Analyst 2019, 144, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Chaland, B.; Mariette, F.; Marchal, P.; De Certaines, J. 1H Nuclear Magnetic Resonance Relaxometric Characterization of Fat and Water States in Soft and Hard Cheese. J. Dairy Res. 2000, 67, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Galed, G.; Fernández-Valle, M.E.; Martínez, A.; Heras, A. Application of MRI to Monitor the Process of Ripening and Decay in Citrus Treated with Chitosan Solutions. Magn. Reson. Imaging 2004, 22, 127–137. [Google Scholar] [CrossRef]
- Cornillon, P.; Salim, L.C. Characterization of Water Mobility and Distribution in Low- and Intermediate-Moisture Food Systems. Magn. Reson. Imaging 2000, 18, 335–341. [Google Scholar] [CrossRef]
- Mariette, F. Investigations of Food Colloids by NMR and MRI. Curr. Opin. Colloid Interface Sci. 2009, 14, 203–211. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, D.; Xiang, G.; Hu, L. Determination of Cis/Trans Fatty Acid Contents in Edible Oils by 1H NMR Spectroscopy in Association with Multivariate Calibration. J. Food Compos. Anal. 2022, 105, 104195. [Google Scholar] [CrossRef]
- Collewet, G.; Bogner, P.; Allen, P.; Busk, H.; Dobrowolski, A.; Olsen, E.; Davenel, A. Determination of the Lean Meat Percentage of Pig Carcasses Using Magnetic Resonance Imaging. Meat Sci. 2005, 70, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Renou, J.P.; Foucat, L.; Bonny, J.M. Magnetic Resonance Imaging Studies of Water Interactions in Meat. Food Chem. 2003, 82, 35–39. [Google Scholar] [CrossRef]
- Xiong, Y.L. Myofibrillar Protein from Different Muscle Fiber Types: Implications of Biochemical and Functional Properties in Meat Processing∗. Crit. Rev. Food Sci. Nutr. 1994, 34, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Shaarani, S.M.; Nott, K.P.; Hall, L.D. Combination of NMR and MRI Quantitation of Moisture and Structure Changes for Convection Cooking of Fresh Chicken Meat. Meat Sci. 2006, 72, 398–403. [Google Scholar] [CrossRef]
- Wu, J.-L.; Zhang, J.-L.; Du, X.-X.; Shen, Y.-J.; Lao, X.; Zhang, M.-L.; Chen, L.-Q.; Du, Z.-Y. Evaluation of the Distribution of Adipose Tissues in Fish Using Magnetic Resonance Imaging (MRI). Aquaculture 2015, 448, 112–122. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Xie, J.; Chen, X.-J. Applications of Non-Invasive and Novel Methods of Low-Field Nuclear Magnetic Resonance and Magnetic Resonance Imaging in Aquatic Products. Front. Nutr. 2021, 8, 651804. [Google Scholar] [CrossRef]
- Brix, O.; Apablaza, P.; Baker, A.; Taxt, T.; Grüner, R. Chemical Shift Based MR Imaging and Gas Chromatography for Quantification and Localization of Fat in Atlantic Mackerel. J. Exp. Mar. Biol. Ecol. 2009, 376, 68–75. [Google Scholar] [CrossRef]
- Heude, C.; Lemasson, E.; Elbayed, K.; Piotto, M. Rapid Assessment of Fish Freshness and Quality by 1H HR-MAS NMR Spectroscopy. Food Anal. Methods 2015, 8, 907–915. [Google Scholar] [CrossRef]
- Huang, L.; Song, Y.; Kamal, T.; Li, Y.; Xia, K.; Lin, Z.; Qi, L.; Cheng, S.; Zhu, B.-W.; Tan, M. A Non-Invasive Method Based on Low-Field NMR to Analyze the Quality Changes in Caviar from Hybrid Sturgeon (Huso dauricus, Acipenser schrenckiid). J. Food Process Preserv. 2017, 41, e13256. [Google Scholar] [CrossRef]
- Toussaint, C.; Fauconneau, B.; Médale, F.; Collewet, G.; Akoka, S.; Haffray, P.; Davenel, A. Description of the Heterogeneity of Lipid Distribution in the Flesh of Brown Trout (Salmo Trutta) by MR Imaging. Aquaculture 2005, 243, 255–267. [Google Scholar] [CrossRef]
- Truzzi, E.; Marchetti, L.; Benvenuti, S.; Ferroni, A.; Rossi, M.C.; Bertelli, D. Novel Strategy for the Recognition of Adulterant Vegetable Oils in Essential Oils Commonly Used in Food Industries by Applying 13C NMR Spectroscopy. J. Agric. Food Chem. 2021, 69, 8276–8286. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, M.E.; Mannu, A.; Mele, A. NMR Determination of Free Fatty Acids in Vegetable Oils. Processes 2020, 8, 410. [Google Scholar] [CrossRef]
- Chen, C.; Mahar, R.; Merritt, M.E.; Denlinger, D.L.; Hahn, D.A. ROS and Hypoxia Signaling Regulate Periodic Metabolic Arousal during Insect Dormancy to Coordinate Glucose, Amino Acid, and Lipid Metabolism. Proc. Natl. Acad. Sci. USA 2021, 118, e2017603118. [Google Scholar] [CrossRef]
- Coelho, M.; Mahar, R.; Belew, G.D.; Torres, A.; Barosa, C.; Cabral, F.; Viegas, I.; Gastaldelli, A.; Mendes, V.M.; Manadas, B.; et al. Enrichment of Hepatic Glycogen and Plasma Glucose from H2 18 O Informs Gluconeogenic and Indirect Pathway Fluxes in Naturally Feeding Mice. NMR Biomed. 2023, 36, e4837. [Google Scholar] [CrossRef]
- Kuwata, K. An Emerging Concept of Biomolecular Dynamics and Function: Applications of NMR & MRI. MRMS 2002, 1, 27–31. [Google Scholar] [CrossRef]
- Mahar, R.; Manivel, N.; Kanojiya, S.; Mishra, D.K.; Shukla, S.K. Assessment of Tissue Specific Distribution and Seasonal Variation of Alkaloids in Alstonia Scholaris. Metabolites 2022, 12, 607. [Google Scholar] [CrossRef] [PubMed]
- Mahar, R.; Chang, M.C.; Merritt, M.E. Measuring NQO1 Bioactivation Using [2H7]Glucose. Cancers 2021, 13, 4165. [Google Scholar] [CrossRef] [PubMed]
- Dumez, J. Perspectives on Hyperpolarised Solution-state Magnetic Resonance in Chemistry. Magn. Reson Chem. 2017, 55, 38–46. [Google Scholar] [CrossRef]
- Millis, K.K.; Maas, W.E.; Cory, D.G.; Singer, S. Gradient, High-resolution, Magic-angle Spinning Nuclear Magnetic Resonance Spectroscopy of Human Adipocyte Tissue. Magn. Reson. Med. 1997, 38, 399–403. [Google Scholar] [CrossRef]
- Picone, G. The 1H HR-NMR Methods for the Evaluation of the Stability, Quality, Authenticity, and Shelf Life of Foods. Encyclopedia 2024, 4, 1617–1628. [Google Scholar] [CrossRef]
- Ciampa, A.; Picone, G. Application of HR-NMR for the Metabolic Kinetic Assessment of Red Mullet (Mullus Barbatus) and Bogue (Boops Boops) Samples during Different Temperature Storage. Metabolites 2023, 13, 482. [Google Scholar] [CrossRef]
- Saglam, M.; Paasch, N.; Horns, A.L.; Weidner, M.; Bachmann, R. 1H NMR Metabolic Profiling for the Differentiation of Fish Species. Food Chem. Adv. 2024, 4, 100602. [Google Scholar] [CrossRef]
- Hoerterer, C.; Petereit, J.; Lannig, G.; Bock, C.; Buck, B.H. 1H-NMR-Based Metabolic Profiling in Muscle and Liver Tissue of Juvenile Turbot (Scophthalmus Maximus) Fed with Plant and Animal Protein Sources. Metabolites 2023, 13, 612. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Fu, J.; Wang, S.; Liu, H.; Zeng, Y.; Yang, J.; Xiong, S. 1H-NMR Metabolomics Analysis of Nutritional Components from Two Kinds of Freshwater Fish Brain Extracts. RSC Adv. 2018, 8, 19470–19478. [Google Scholar] [CrossRef] [PubMed]
- Erikson, U.; Standal, I.B.; Aursand, I.G.; Veliyulin, E.; Aursand, M. Use of NMR in Fish Processing Optimization: A Review of Recent Progress. Magn. Reson Chem. 2012, 50, 471–480. [Google Scholar] [CrossRef]
- Lamanna, R. Proton NMR Profiling of Food Samples. In Annual Reports on NMR Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2013; Volume 80, pp. 239–291. ISBN 978-0-12-408097-3. [Google Scholar]
- Pasikanti, K.K.; Esuvaranathan, K.; Ho, P.C.; Mahendran, R.; Kamaraj, R.; Wu, Q.H.; Chiong, E.; Chan, E.C.Y. Noninvasive Urinary Metabonomic Diagnosis of Human Bladder Cancer. J. Proteome Res. 2010, 9, 2988–2995. [Google Scholar] [CrossRef]
- Amaro, F.; Carvalho, M.; Bastos, M.D.L.; Guedes De Pinho, P.; Pinto, J. Pharmacometabolomics Applied to Personalized Medicine in Urological Cancers. Pharmaceuticals 2022, 15, 295. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Mahar, R.; McLeod, M.A.; Giacalone, A.G.; Huang, X.; Boothman, D.A.; Merritt, M.E. Synergistic Effect of β-Lapachone and Aminooxyacetic Acid on Central Metabolism in Breast Cancer. Nutrients 2022, 14, 3020. [Google Scholar] [CrossRef]
- Cilenti, L.; Di Gregorio, J.; Mahar, R.; Liu, F.; Ambivero, C.T.; Periasamy, M.; Merritt, M.E.; Zervos, A.S. Inactivation of Mitochondrial MUL1 E3 Ubiquitin Ligase Deregulates Mitophagy and Prevents Diet-Induced Obesity in Mice. Front. Mol. Biosci. 2024, 11, 1397565. [Google Scholar] [CrossRef]
- Jiang, L.; Sullivan, H.; Wang, B. Principal Component Analysis (PCA) Loading and Statistical Tests for Nuclear Magnetic Resonance (NMR) Metabolomics Involving Multiple Study Groups. Anal. Lett. 2022, 55, 1648–1662. [Google Scholar] [CrossRef]
- Witjaksono, G.; Alva, S. Applications of Mass Spectrometry to the Analysis of Adulterated Food. In Mass Spectrometry—Future Perceptions and Applications; Shamrao Kamble, G., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-83962-756-9. [Google Scholar]
- Ben-Ayed, R.; Kamoun-Grati, N.; Rebai, A. An Overview of the Authentication of Olive Tree and Oil. Comp. Rev. Food Sci. Food Safe 2013, 12, 218–227. [Google Scholar] [CrossRef]
- Ellis, D.I.; Brewster, V.L.; Dunn, W.B.; Allwood, J.W.; Golovanov, A.P.; Goodacre, R. Fingerprinting Food: Current Technologies for the Detection of Food Adulteration and Contamination. Chem. Soc. Rev. 2012, 41, 5706. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, A.P.; Thomas, F.; Donarski, J.; Ingallina, C.; Circi, S.; Cesare Marincola, F.; Capitani, D.; Mannina, L. Use of NMR Applications to Tackle Future Food Fraud Issues. Trends Food Sci. Technol. 2019, 91, 347–353. [Google Scholar] [CrossRef]
- Schmidt, S.J.; Sun, X.; Litchfield, J.B.; Eads, T.M. Applications of Magnetic Resonance Imaging in Food Science. Crit. Rev. Food Sci. Nutr. 1996, 36, 357–385. [Google Scholar] [CrossRef]
- Mariette, F.; Collewet, G.; Davenel, A.; Lucas, T.; Musse, M. Quantitative MRI in Food Science & Food Engineering. In Encyclopedia of Magnetic Resonance; Harris, R.K., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; p. emrstm1272. ISBN 978-0-470-03459-0. [Google Scholar]
- Adamopoulos, K.G.; Goula, A.M.; Petropakis, H.J. Quality Control During Processing of Feta Cheese—NIR Application. J. Food Compos. Anal. 2001, 14, 431–440. [Google Scholar] [CrossRef]
- Vlasiou, M.C. Cheese and Milk Adulteration: Detection with Spectroscopic Techniques and HPLC: Advantages and Disadvantages. Dairy 2023, 4, 509–514. [Google Scholar] [CrossRef]
- Ciampa, A.; Dell’Abate, M.T.; Florio, A.; Tarricone, L.; Di Gennaro, D.; Picone, G.; Trimigno, A.; Capozzi, F.; Benedetti, A. Combined Magnetic Resonance Imaging and High Resolution Spectroscopy Approaches to Study the Fertilization Effects on Metabolome, Morphology and Yeast Community of Wine Grape Berries, Cultivar Nero Di Troia. Food Chem. 2019, 274, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Liu, X.; Liu, Y.; Zhai, X.; Cao, T.; Wang, A.; Qiu, J. Applications of Nuclear Magnetic Resonance Spectroscopy to the Evaluation of Complex Food Constituents. Food Chem. 2021, 342, 128258. [Google Scholar] [CrossRef]
- Ozel, B.; Oztop, M.H. A Quick Look to the Use of Time Domain Nuclear Magnetic Resonance Relaxometry and Magnetic Resonance Imaging for Food Quality Applications. Curr. Opin. Food Sci. 2021, 41, 122–129. [Google Scholar] [CrossRef]
- Ciampa, A.; Danesi, F.; Picone, G. NMR-Based Metabolomics for a More Holistic and Sustainable Research in Food Quality Assessment: A Narrative Review. Appl. Sci. 2022, 13, 372. [Google Scholar] [CrossRef]
- Hatzakis, E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Comp. Rev. Food Sci. Food Safe 2019, 18, 189–220. [Google Scholar] [CrossRef] [PubMed]
- Milani, M.I.; Rossini, E.L.; Catelani, T.A.; Pezza, L.; Toci, A.T.; Pezza, H.R. Authentication of Roasted and Ground Coffee Samples Containing Multiple Adulterants Using NMR and a Chemometric Approach. Food Control 2020, 112, 107104. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, S.; Wang, S.; Lu, X. Application of Nuclear Magnetic Resonance Spectroscopy in Food Adulteration Determination: The Example of Sudan Dye I in Paprika Powder. Sci. Rep. 2017, 7, 2637. [Google Scholar] [CrossRef]
- Schmid, N.; Bruderer, S.; Paruzzo, F.; Fischetti, G.; Toscano, G.; Graf, D.; Fey, M.; Henrici, A.; Ziebart, V.; Heitmann, B.; et al. Deconvolution of 1D NMR Spectra: A Deep Learning-Based Approach. J. Magn. Reson. 2023, 347, 107357. [Google Scholar] [CrossRef]
- Fraser, R.; Rutjes, F.P.J.T.; Feiters, M.C.; Tessari, M. Analysis of Complex Mixtures by Chemosensing NMR Using Para. -Hydrogen-Induced Hyperpolarization. Acc. Chem. Res. 2022, 55, 1832–1844. [Google Scholar] [CrossRef]
- Harris, K.D.M. New in Situ Solid-State NMR Strategies for Exploring Materials Formation and Adsorption Processes: Prospects in Heterogenous Catalysis. Appl. Petrochem. Res. 2016, 6, 295–306. [Google Scholar] [CrossRef]
- Palacios-Jordan, H.; Jané-Brunet, A.; Jané-Brunet, E.; Puiggròs, F.; Canela, N.; Rodríguez, M.A. Considerations on the Analysis of E-900 Food Additive: An NMR Perspective. Foods 2022, 11, 297. [Google Scholar] [CrossRef]
- Lei, J.; Mahar, R.; Chang, M.C.; Collins, J.; Merritt, M.E.; Garrett, T.J.; Yost, R.A. Segmented Flow Strategies for Integrating Liquid Chromatography–Mass Spectrometry with Nuclear Magnetic Resonance for Lipidomics. Anal. Chem. 2023, 95, 1908–1915. [Google Scholar] [CrossRef]
- Olson, D.L.; Lacey, M.E.; Webb, A.G.; Sweedler, J.V. Nanoliter-Volume1H NMR Detection Using Periodic Stopped-Flow Capillary Electrophoresis. Anal. Chem. 1999, 71, 3070–3076. [Google Scholar] [CrossRef] [PubMed]
- Sequeira-Antunes, B.; Ferreira, H.A. Μ-NMR Technology for Biomedical Applications: A Review. Chemosensors 2024, 12, 248. [Google Scholar] [CrossRef]
- Yanibada, B.; Boudra, H.; Debrauwer, L.; Martin, C.; Morgavi, D.P.; Canlet, C. Evaluation of Sample Preparation Methods for NMR-Based Metabolomics of Cow Milk. Heliyon 2018, 4, e00856. [Google Scholar] [CrossRef] [PubMed]
- Grimes, J.H.; O’Connell, T.M. The Application of Micro-Coil NMR Probe Technology to Metabolomics of Urine and Serum. J. Biomol. NMR 2011, 49, 297–305. [Google Scholar] [CrossRef]
- Cesare Marincola, F.; Mannina, L. Special Issue on “NMR-Based Metabolomics and Its Applications Volume 2. Metabolites 2020, 10, 45. [Google Scholar] [CrossRef]
- Castaing-Cordier, T.; Bouillaud, D.; Farjon, J.; Giraudeau, P. Recent Advances in Benchtop NMR Spectroscopy and Its Applications. In Annual Reports on NMR Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2021; Volume 103, pp. 191–258. ISBN 978-0-12-824613-9. [Google Scholar]
- Proietti, N.; Mannina, L.; Sobolev, A.P. Special Issue “Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science and Processing. Appl. Sci. 2022, 12, 9223. [Google Scholar] [CrossRef]
- Osborne, B.G. Near-Infrared Spectroscopy in Food Analysis. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; Wiley: Hoboken, NJ, USA, 2000; ISBN 978-0-471-97670-7. [Google Scholar]
- Gautam, V.; Garg, V.; Meena, N.; Kumari, S.; Patel, S.; Mukesh; Singh, H.; Singh, S.; Singh, R.K. Harnessing NMR Technology for Enhancing Field Crop Improvement: Applications, Challenges, and Future Perspectives. Metabolomics 2025, 21, 27. [Google Scholar] [CrossRef]
- Grassi, S.; Casiraghi, E. Advances in NIR Spectroscopy Analytical Technology in Food Industries. Foods 2022, 11, 1250. [Google Scholar] [CrossRef]
- Kamal, G.M.; Uddin, J.; Tahir, M.S.; Khalid, M.; Ahmad, S.; Hussain, A.I. Nuclear Magnetic Resonance Spectroscopy in Food Analysis. In Techniques to Measure Food Safety and Quality; Khan, M.S., Shafiur Rahman, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 137–168. ISBN 978-3-030-68635-2. [Google Scholar]
- Dang, Q.M.; Simpson, J.H.; Parish, C.A.; Leopold, M.C. Evaluating Halogen-Bond Strength as a Function of Molecular Structure Using Nuclear Magnetic Resonance Spectroscopy and Computational Analysis. J. Phys. Chem. A 2021, 125, 9377–9393. [Google Scholar] [CrossRef] [PubMed]
- Azizian, H.; Kramer, J.K.G. A Rapid Method for the Quantification of Fatty Acids in Fats and Oils with Emphasis on Trans. Fatty Acids Using Fourier Transform near Infrared Spectroscopy (FT-NIR). Lipids 2005, 40, 855–867. [Google Scholar] [CrossRef]
- Akbey, Ü.; Franks, W.T.; Linden, A.; Orwick-Rydmark, M.; Lange, S.; Oschkinat, H. Dynamic Nuclear Polarization Enhanced NMR in the Solid-State. In Hyperpolarization Methods in NMR Spectroscopy; Kuhn, L.T., Ed.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2013; Volume 338, pp. 181–228. ISBN 978-3-642-39727-1. [Google Scholar]
- Woodcock, T.; Downey, G.; O’Donnell, C.P. Better Quality Food and Beverages: The Role of near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2008, 16, 1–29. [Google Scholar] [CrossRef]
- Triyasmono, L.; Holzgrabe, U. Combination Quantitative 1H NMR and Chemometric Approaches for the Assessment of Quality Control in Commercially Available Products of Red Fruit (Pandanus Conoidues, Lam.) Oil. J. Pharm. Biomed. Anal. Open 2023, 1, 100010. [Google Scholar] [CrossRef]
- Fodor, M.; Matkovits, A.; Benes, E.L.; Jókai, Z. The Role of Near-Infrared Spectroscopy in Food Quality Assurance: A Review of the Past Two Decades. Foods 2024, 13, 3501. [Google Scholar] [CrossRef]
- Burger, R.; Lindner, S.; Rumpf, J.; Do, X.T.; Diehl, B.W.K.; Rehahn, M.; Monakhova, Y.B.; Schulze, M. Benchtop versus High Field NMR: Comparable Performance Found for the Molecular Weight Determination of Lignin. J. Pharm. Biomed. Anal. 2022, 212, 114649. [Google Scholar] [CrossRef]
- Gullifa, G.; Barone, L.; Papa, E.; Giuffrida, A.; Materazzi, S.; Risoluti, R. Portable NIR Spectroscopy: The Route to Green Analytical Chemistry. Front. Chem. 2023, 11, 1214825. [Google Scholar] [CrossRef]
- Petrovic, M.; Farré, M.; De Alda, M.L.; Perez, S.; Postigo, C.; Köck, M.; Radjenovic, J.; Gros, M.; Barcelo, D. Recent Trends in the Liquid Chromatography–Mass Spectrometry Analysis of Organic Contaminants in Environmental Samples. J. Chromatogr. A 2010, 1217, 4004–4017. [Google Scholar] [CrossRef]
- Sorapalli, S.K.; Kagitha, K.B.; Doddi, N.S.; Alla, M.; Nagidi, M.; Gope, E.R. A Review of Liquid Chromatography-Mass Spectrometry and Its Applications in Chemical Analysis: Review Article. J. Pharma Insights Res. 2024, 2, 025–032. [Google Scholar] [CrossRef]
- Gathungu, R.M.; Kautz, R.; Kristal, B.S.; Bird, S.S.; Vouros, P. The Integration of LC-MS and NMR for the Analysis of Low Molecular Weight Trace Analytes in Complex Matrices. Mass. Spec. Rev. 2020, 39, 35–54. [Google Scholar] [CrossRef]
- Gebretsadik, T.; Linert, W.; Thomas, M.; Berhanu, T.; Frew, R. LC–NMR for Natural Product Analysis: A Journey from an Academic Curiosity to a Robust Analytical Tool. Sci 2021, 3, 6. [Google Scholar] [CrossRef]
- Thomas, J.N.; Ramaswamy, V.; Litvak, I.M.; Johnston, T.L.; Edison, A.S.; Brey, W.W. Progress Towards a Higher Sensitivity 13C-Optimized 1.5 Mm HTS NMR Probe. IEEE Trans. Appl. Supercond. 2021, 31, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Griffin, R.G.; Prisner, T.F. High Field Dynamic Nuclear Polarization—The Renaissance. Phys. Chem. Chem. Phys. 2010, 12, 5737. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, J.; Liu, P.; Chen, H. Phase-Constrained Reconstruction Method with Compressed Sensing for Multi-Parametric Quantitative Magnetic Resonance Imaging. Biomed. Signal Process. Control 2023, 80, 104383. [Google Scholar] [CrossRef]
- Cao, R.; Li, J.; Ding, H.; Zhao, T.; Guo, Z.; Li, Y.; Sun, X.; Wang, F.; Qiu, J. Synergistic Approaches of AI and NMR in Enhancing Food Component Analysis: A Comprehensive Review. Trends Food Sci. Technol. 2025, 156, 104852. [Google Scholar] [CrossRef]
- Venkataraman, V.; Browning, T.; Pedrosa, I.; Abbara, S.; Fetzer, D.; Toomay, S.; Peshock, R.M. Implementing Shared, Standardized Imaging Protocols to Improve Cross-Enterprise Workflow and Quality. J. Digit. Imaging 2019, 32, 880–887. [Google Scholar] [CrossRef]
- Laghi, L.; Picone, G.; Capozzi, F. Nuclear Magnetic Resonance for Foodomics beyond Food Analysis. TrAC Trends Anal. Chem. 2014, 59, 93–102. [Google Scholar] [CrossRef]
- Rotondo, A.; La Torre, G.L.; Dugo, G.; Cicero, N.; Santini, A.; Salvo, A. Oleic Acid Is Not the Only Relevant Mono-Unsaturated Fatty Ester in Olive Oil. Foods 2020, 9, 384. [Google Scholar] [CrossRef]
- Duffy, J.; Urbas, A.; Niemitz, M.; Lippa, K.; Marginean, I. Differentiation of Fentanyl Analogues by Low-Field NMR Spectroscopy. Anal. Chim. Acta 2019, 1049, 161–169. [Google Scholar] [CrossRef]
- Kuzhaeva, A.; Zgonnik, P.V.; Anisimova, N.A. Nuclear Magnetic Resonance Methods—The Key to Determining the Structure of Organic Substances. J. Phys. Conf. Ser. 2019, 1384, 012071. [Google Scholar] [CrossRef]
S. No. | Study Carried Out | Key Findings | Conclusion | Ref. No. |
---|---|---|---|---|
1 | NMR spectroscopy was utilized to assess the quality of black pepper (Piper nigrum) samples originating from India, Vietnam, and Pakistan. | Pakistani black pepper had the highest piperine content; the Vietnamese sample was superior in overall quality. | 1H and 13C NMR data confirm the presence of piperidine, amide, and pyrrolidine derivatives, whereas IR shows the presence of peaks and features that resemble the standard drug piperine. | [68] |
2 | Truzzi et al. used 13C NMR spectroscopy to detect and identify vegetable oil (VO) adulterants in essential oils (EOs). | Palmitic acid, oleic acid, and linoleic acid were identified as chemical markers in the triglycerides of VOs. | For identification of adulterants in oil, 13C NMR was preferred over 1H-NMR due to the ease of interpretation. Indeed, 1H-NMR of Vos exhibited several overlapping signals with poor spectral resolution. | [111] |
3 | Bertelli et al. utilized NMR spectroscopy with chemometrics to detect honey adulteration by intentionally adding sugar syrups. | Sugars (maltose and glucose) are identified as key markers for detecting honey adulteration. | NMR allows discrimination between the signals of very similar chemical structures, like sugars, and allows simultaneous quantification with precision and accuracy, but FTIR is a less informative technique for discriminating sugars. | [61] |
4 | Bertram and Andersen’s group employed NMR relaxometry to study water distribution and mobility in meat. | Water mobility is identified as a physical marker; lactic acid, amino acids, and lipids/fatty acids are identified as chemical markers. | NMR can measure the diffusion of the water molecules and fiber orientation in meat samples, which is not possible using mass spectrometry and IR. | [90] |
5 | Cai et al. used 1H-NMR spectroscopy for the quality evaluation and adulteration identification of edible oils. | Linolenic acid, oleic acid, triglycerides, and 1,3′-diglycerides identified as key markers. | 1H-NMR is a sensitive, fast, and convenient tool for the identification of adulterants and quality assessment of edible oils. | [63] |
6 | 1H-NMR spectroscopy combined with multivariate data analysis was employed to detect butter adulteration with lard, and Partial Least Squares (PLS) regression was used to quantify lard content in butter samples. | Free fatty acids and fatty acids attached to glycerol, as well as the glycerol backbone, identified as chemical markers. | 1H-NMR and chemometrics could be a rapid, non-destructive, and powerful tool for the authentication of dairy foodstuffs. | [47] |
7 | 1H-NMR spectroscopy with multivariate statistical analysis (PCA and LDA) was employed to classify and authenticate different grape varieties in Chinese wines, both red and white. | Sugars, organic acids, ethanol, volatile compounds, and phenolic compounds identified as chemical markers. | Demonstrated the potential of NMR with multivariate models for verifying the different grape varieties in Chinese red and white wines, expanding its application in the liquor sector. | [69] |
8 | NMR in conjunction with multivariate analysis was employed to discriminate between two species of cinnamon: Cinnamomum verum and Cinnamomum cassia. | Eugenol and fatty acids have been identified as reliable markers for differentiation. | NMR fingerprinting of cinnamon resources, providing an examination of sensory characters of the barks. Volatiles and primary metabolites were identified and quantified using 1H-NMR, providing novel insight into their phytoconstituents. | [62] |
9 | MRI was used to investigate the use of chitosan, a biopolymer, as a preservative and fungistatic agent for citrus fruits, specifically Fortune mandarins and Valencia oranges. | Water distribution and its mobility in the fruit were identified as key markers for imaging. | The dissolution of chitosan in the fruits produced excellent results in terms of weight loss and visual appearance. MRI monitors the process of fruit ripening and decay. | [97] |
10 | 1H-NMR spectroscopy with chemometric analysis was employed to assess the traceability and authentication of “Tuscan PGI” Extra-Virgin Olive Oils (EVOOs). | Fatty acids (oleic acid, saturated fatty acids, polyunsaturated fatty acids) are identified as chemical markers. | The results of this work confirmed the requirement of monocultivar genetically certified samples for constructing a 1H-NMR-based metabolic database for cultivar and/or geographical variation. | [45] |
11 | The study used 60 MHz 1H-NMR spectroscopy (low-field benchtop proton NMR) to authenticate saffron and detect potential adulterants. | Picrocrocin, crocins, fatty acids, and kaempferol are identified as primary markers in saffron. | Low-cost, low-risk, and suitable extraction method for 60 MHz benchtop NMR, providing spectra with clear features of secondary metabolites in saffron samples. | [19] |
12 | NMR spectroscopy was utilized to authenticate coffee blends by 16-O-Methylcafestol. This study was employed to distinguish Robusta coffee beans from Arabica beans. | 16-O-Methylcafestol is identified as a useful marker for distinguishing Robusta coffee beans from Arabica beans. | NMR chemical shifts provide information about the esterified and non-esterified compounds in the mixture. The shifting of peaks indicates the degradation of the food products. | [20] |
13 | Mannina et al. developed a method employing 1H-NMR spectroscopy to detect the adulteration of refined olive oil with refined hazelnut oil. | Linolenic acid, squalene, palmitic and stearic residues, and β-sitosterol were identified as chemical markers. | 1H-NMR shows potential to detect adulteration of olive oil with hazelnut oil at low levels (10%). NMR does not require extraction and can be used to detect olive oil adulteration. Compared to other spectroscopic techniques, it does not have problems in signal quantification for both major and minor components present in olive oils. | [12] |
14 | 1H-NMR spectroscopy has been utilized to investigate the adulteration of fresh coconut water. The adulteration was carried out with water–sugar mixtures. | Malic acid signals were identified as a potential marker for detecting adulteration in coconut water. | 1H-NMR spectroscopy enables quantification of the degree of adulteration. The chemical shift and lineshape of malic acid can be utilized as a potential marker for the substitution of coconut water with extrinsic components. | [95] |
15 | HRMAS NMR spectroscopy and multivariate analysis hold tremendous potential for the characterization of adulterants in Italian sweet pepper (Capsicum annuum L.). | Sugars (glucose, fructose, sucrose), organic acids (malate, ascorbate, acetate), amino acids (e.g., glutamine, threonine, GABA), and fatty acids (both saturated and unsaturated) identified as chemical markers. | HRMAS NMR provides information about amino acids, organic acids, fatty acids, and other metabolites, without any extraction and purification. HRMAS NMR with PLS-DA proved to be a very useful tool in food science and can be applied to any foodstuff. | [49] |
16 | Low-field Nuclear Magnetic Resonance (LF-NMR) and chemometric methods were employed to detect sesame oil adulteration with soybean oil. | Shorter relaxation time corresponding to protons in linoleic acid and longer relaxation time corresponding to protons in oleic acid were identified as key parameters. | The T2 relaxation time is a robust diagnostic parameter for identifying adulteration, as it depends upon the relaxation of the different types of protons in a specific environment, and adulteration causes a change in the T2 relaxation time. | [44] |
17 | 1H TD-NMR combined with multivariate analysis was employed to detect and quantify milk adulteration. Various adulterants, including hydrogen peroxide, synthetic urine, whey, urea, and synthetic milk, were introduced to milk samples. | The T2 relaxation times of the milk were identified as a chemical marker that was associated with the adulterant concentrations. | 1H TD-NMR combined with chemometrics may be used for the automation of milk analysis with high-throughput screening without any sample preparation. | [14] |
18 | An MRI technique was used to compare the internal morphology of six new kiwifruit selections with the well-known “Hayward” cultivar. | T2 relaxation times (longer T2 linked with ripening tissue and shorter T2 linked with less ripe tissue) were identified as a robust parameter. | MRI is a powerful imaging tool in assessing food quality, providing images about the spin density (mainly water) distribution, and the relationship between water and its binding cellular tissues. | [29] |
19 | 1H, 13C, and 31P NMR techniques were employed to analyze the free fatty acids (FFA) in vegetable oils, such as waste cooking oils (WCO). | Palmitic acid, stearic acid, oleic acid, linoleic acid, and α-linolenic acid were identified as chemical markers. | The advantage of the chemical shift dispersion in 31P NMR is that it provides characteristic signals corresponding to phosphitylated sterols, diglycerides, and fatty acids in virgin olive oil. | [112] |
20 | 1H-NMR combined with chemometric analysis was employed for profiling and determination of C18:1 trans fatty acids (TFA) positional isomers in chocolate. | Chemical shift values at 5.25–5.45 ppm and 1.94–1.99 ppm were used as markers to predict the amount of TFA isomers in chocolate. | 1H-NMR determines positional isomers and total TFA content in chocolate. The CH (double bonds and glycerol backbone), and CH2 (allylic to trans double bonds) signals were identified for rapid analysis, and may be used for TFA monitoring in the chocolate industry. | [77] |
Technique | Analytical Capability | Core Strengths | Limitations | Suitable Food Matrices | Applications |
---|---|---|---|---|---|
(NMR) Nuclear Magnetic Resonance | Non-destructive, reproducible | Comprehensive metabolic profiling, precise structure elucidation | High cost and less sensitive than MS | Dairy, meat, fruits, juices | Adulteration detection, authenticity, metabolic fingerprinting |
LC-MS (Liquid Chromatography–Mass Spectrometry) | High sensitivity, separation and identification | Detection of trace compounds | Sample preparation intensive, matrix effects | Grains, oils, beverages | Contaminant analysis, pesticide residues, targeted metabolomics |
GC-MS (Gas Chromatography–Mass Spectrometry) | Volatile compound detection | Excellent for flavor profiling | Derivatization often needed | Spices, oils, coffee, processed foods | Aroma compounds, quality control |
FTIR (Fourier-Transform Infrared Spectroscopy) | Rapid, non-destructive | Easy to use, cost-effective | Limited to functional group information | Dairy, oils, flour | Composition screening, authenticity |
NIR (Near-Infrared Spectroscopy) | Fast, portable, minimal sample preparation | Suitable for routine testing | Lower sensitivity and resolution | Cereals, meat, fruits | Moisture, fat, and protein estimation |
UV–Vis Spectroscopy | Simple, economical | Quick quantitative assays | Limited to chromophore detection | Beverages, honey, vegetables | Antioxidant activity, polyphenol content |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, C.; Mahar, R. Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies. Foods 2025, 14, 2417. https://doi.org/10.3390/foods14142417
Prakash C, Mahar R. Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies. Foods. 2025; 14(14):2417. https://doi.org/10.3390/foods14142417
Chicago/Turabian StylePrakash, Chandra, and Rohit Mahar. 2025. "Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies" Foods 14, no. 14: 2417. https://doi.org/10.3390/foods14142417
APA StylePrakash, C., & Mahar, R. (2025). Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies. Foods, 14(14), 2417. https://doi.org/10.3390/foods14142417