Development and Evaluation of Novel Functional Foods

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Nutraceuticals, Functional Foods, and Novel Foods".

Deadline for manuscript submissions: closed (25 April 2025) | Viewed by 2955

Special Issue Editor

Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
Interests: functional foods; food nutrition; fruit and vegetable processing; processing of agricultural products; natural foods; research on deep processing technology for foods; R&D of functional foods; research on functional foods for the prevention of metabolic syndrome; functional foods of plant origin

Special Issue Information

Dear Colleagues,

Functional foods have specific nutritional and health functions: that is, they are suitable for specific people to eat, have the function of regulating the body, and are not used for treatment purposes. In recent years, due to increasing health demands, functional foods have attracted wide attention, becoming a hot topic in nutrition and health research. These foods can produce positive physiological reactions in the human body, such as enhancing immunity, regulating the gut flora, acting as antioxidants, and reducing the risk of cardiovascular disease, by being rich in specific functional ingredients, including vitamins, minerals, dietary fibers, antioxidant substances, probiotics, etc. The development and evaluation of new functional foods can help deepen our knowledge of the metabolic process and the mechanisms of action of and interaction between functional food components and the human body. In response to the latest trends and research prospects, this Special Issue of Foods invites you to submit recent research on the development and evaluation of novel functional foods alongside research results and/or quality reviews on this subject.

Dr. Feng Zhou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • novel functional foods
  • nutrition and health
  • metabolic mechanism
  • functional factor
  • healthcare function

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 2562 KiB  
Article
Rosemarinic Acid-Induced Destabilization of Aβ Peptides: Insights from Molecular Dynamics Simulations
by Liang Zhao, Weiye Jiang, Zehui Zhu, Fei Pan, Xin Xing, Feng Zhou and Lei Zhao
Foods 2024, 13(24), 4170; https://doi.org/10.3390/foods13244170 - 23 Dec 2024
Viewed by 959
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder marked by the progressive accumulation of amyloid-β (Aβ) plaques and tau protein tangles in the brain. These pathological aggregates interfere with neuronal function, leading to the disruption of cognitive processes, particularly memory. The deposition of Aβ [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disorder marked by the progressive accumulation of amyloid-β (Aβ) plaques and tau protein tangles in the brain. These pathological aggregates interfere with neuronal function, leading to the disruption of cognitive processes, particularly memory. The deposition of Aβ forms senile plaques, while tau protein, in its hyperphosphorylated state, forms neurofibrillary tangles, both of which contribute to the underlying neurodegeneration observed in AD. Rosmarinic acid (RosA), a natural compound found in plants such as Rosmarinus officinalis, is known for its antioxidant, anti-inflammatory, and antimicrobial properties. Due to its ability to cross the blood–brain barrier, RosA holds promise as a nutritional supplement that may support brain health. In this study, molecular dynamics (MD) simulations were used to investigate the impact of RosA on the structural stability of Aβ peptides. The results indicated that the addition of RosA increased the instability of Aβ, as evidenced by an increase in the Root Mean Square Deviation (RMSD), a decrease in the Radius of Gyration (Rg), and an expansion of the Solvent Accessible Surface Area (SASA). This destabilization is primarily attributed to the disruption of native hydrogen bonds and hydrophobic interactions in the presence of two RosA molecules. The free energy landscape (FEL) analysis and MM-PBSA (Poisson-Boltzmann Surface Area Mechanics) results further support the notion that RosA can effectively bind to the hydrophobic pocket of the protein, highlighting its potential as a nutritional component that may contribute to maintaining brain health and function. Full article
(This article belongs to the Special Issue Development and Evaluation of Novel Functional Foods)
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 1265 KiB  
Review
Foods for Sleep Improvement: A Review of the Potential and Mechanisms Involved
by Rui Fan, Yingmin Jia, Zhou Chen, Siting Li, Bing Qi and Aijin Ma
Foods 2025, 14(7), 1080; https://doi.org/10.3390/foods14071080 - 21 Mar 2025
Viewed by 1634
Abstract
Insomnia affects one-third of the world’s population; the negative effects of insomnia are significant, and traditional insomnia medications have numerous side effects and cause considerable suffering. This has aroused interest in obtaining sleep-improving substances from foods. This study conducted a comprehensive literature review [...] Read more.
Insomnia affects one-third of the world’s population; the negative effects of insomnia are significant, and traditional insomnia medications have numerous side effects and cause considerable suffering. This has aroused interest in obtaining sleep-improving substances from foods. This study conducted a comprehensive literature review using Web of Science and PubMed with keywords like “sleep”, “insomnia”, and “food”. A subsequent summary of the literature revealed that certain foods, including milk, Ziziphus jujuba, Lactuca sativa, ginseng, Schisandra chinensis, and Juglans regia, etc., are purported to enhance sleep quality by prolonging sleep duration, reducing sleep latency, and alleviating anxiety. The mechanisms of these foods’ effects mainly occur via the central nervous system, particularly the gamma-aminobutyric acid (GABA)ergic and 5-hydroxytryptamine (5-HT)ergic systems. Although this review supports the fact that they have potential, further research is needed. There are also issues such as more limited foods, fewer mechanisms, fewer pharmacokinetic studies, and more traditional research models being involved. These need to be addressed in the future to adequately address the problem of insomnia. It is hoped that this study will contribute to research into foods with sleep-improving properties and, in the future, provide an effective natural alternative for those seeking medication. Full article
(This article belongs to the Special Issue Development and Evaluation of Novel Functional Foods)
Show Figures

Figure 1

Back to TopTop