Foods for Sleep Improvement: A Review of the Potential and Mechanisms Involved
Abstract
:1. Introduction
2. Methods
3. Involvement in Sleep Regulation Mechanisms
3.1. Gamma-Aminobutyric Acid (GABA)
3.2. Tryptophan (Trp)
4. Foods with Sleep-Improving Properties
4.1. Milk
4.2. Ziziphus jujuba
4.3. Lactuca sativa
4.4. Ginseng
4.5. Schisandra chinensis
4.6. Juglans regia
4.7. Others
Categorisation | Ingredient | Known Chemical Components | Model | Time/Doses/ Duration | Results | Mechanism of Action | References |
---|---|---|---|---|---|---|---|
Peptide | Milk | YPVEPF, YFYPEL | Pentobarbital-induced sleeping tests | 7 D, 5 mg/kg, p.o. | Increase sleep duration and sleep onset | Act at the benzodiazepine site of the GABAAR | [24] |
Peptide | Juglans regia | Walnut oligopeptides | Pentobarbital-induced sleeping tests | 30 D, 220, 440, 880 mg/kg, p.o. | Reduce sleep latency and increase sleep duration | Increase GABA and 5-HT levels in the brain | [27] |
Peptide | Peptide | Small-molecule, soybean protein-derived peptide | Pentobarbital-induced sleeping tests | 9 D, 0.65, 1.3. 2.60 g/kg, p.o. | Increase sleep duration | Increase the release of MT and up-regulate the MT1 and MT2 receptor activities | [72] |
Peptide | Milk | A casein hydrolysate rich in the peptide YPVEPF | Unpredictable chronic mild stress procedure | 14 D, 150 mg/kg, p.o. | Reduce sleep latency, increase sleep duration and sleep onset | Increase in GABA, 5-HT, GABAA, 5-HT1A receptors, and BDNF and a decrease in IL-6 and NMDA receptors | [82] |
Peptide | Pneumatophorus japonicus bone | TG7 (YGNPWEK) | 200 lux light modeling insomnia model | 24 h, 0.2 mg/mL, p.o | Decrease and normalize values for distance traveled, swimming speed, and activity time | Regulate visual function and improve circadian rhythms | [148] |
Peptide | Mauremys mutica plastron | Mauremys mutica plastron peptides | Pentobarbital-induced sleeping tests and PCPA-induced insomnia model | 12 D, 400 and 800 mg/kg, p.o. | Reduce sleep latency, increase sleep duration and sleep onset | Improve neurotransmitter system disorders and modulate 5-HT1A and GABAARα1 subunit expression | [149] |
Dairy products | Milk | Tryptic hydrolysate of αs1-casein | Pentobarbital-induced sleeping test and EEG | 3 D, 30–240 or 150 mg/kg, p.o. | Reduce sleep latency and α wave, increase sleep duration and θ wave | Elevate protein expression of GABAAR β1 isoforms in the hypothalamus | [79] |
Dairy products | Milk | Lactobacillus brevis DL1-11 fermented milk | Pentobarbital-induced sleeping tests | 30 D, 8.83, 16, 67, and 33.33 mg/kg, p.o. | Reduce sleep latency, increase sleep duration | Regulate gut microbiota and increase SCFA levels | [84] |
Saponin | Ginseng | Ginsenoside Rg1 | EEG and EMG | 3 D, 5, 10, and 20 mg/kg, p.o. | Increase the duration of total sleep, REM sleep, and NREM sleep | Regulate the noradrenergic system in the blue spot and the 5-HTergic system in the dorsal nucleus of the middle suture | [119] |
Saponin | Ginseng | Ginsenoside Rg5/Rk1 | Pentobarbital-induced sleeping tests | 7 D, 30 and 60 mg/kg, p.o. | Reduce sleep latency and locomotor activity, increase sleep duration | Increase the GABA/Glu ratio, and up-regulate the expression of GABAAR, GABABR, and 5-HT1A | [122] |
Saponin | Ginseng | Rare protopanaxadiol-type ginsenosides and protopanaxatriol-type ginsenosides | Pentobarbital-induced sleeping tests and insomnia model with caffeine | 64 and 96 mg/kg, p.o. | Reduce sleep latency and locomotor activity, increase sleep duration | Activate 5-HTergic and GABAergic systems | [123] |
Saponin | Polygala tenuifolia | Tenuifolin | Measurement of EEG and EMG | 20, 40, and 80 mg/kg, p.o. | Increase NREM sleep, REM sleep, and sleep duration | Mediated by activation of the GABAergic system and/or inhibition of the noradrenergic system | [152] |
Saponin | Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) | Saponin-containing components | Sodium pentobarbital-induced sleeping | 14 D, 150 mg/kg, p.o. | Reduce sleep latency and increase sleep duration | Increase the expression of 5-HT1A, 5-HT2A, GABAARα2, GABAARα3, GAD65/67, TNF-α, and IL-1β | [153] |
Lignans | Schisandra chinensis | Schisantherin A | Pentobarbital-induced sleeping tests | 7 D, 1,75, 3.5, and 7 mg/kg, p.o. | Decrease autonomic activity and sleep latency, increased sleep number and sleep duration in mice | Up-regulate the content of GABA and the expression of GABAAR and GAD, and reduce the content of Glu | [130] |
Lignans | Schisandra chinensis | Schisandrin B | Pentobarbital-induced sleeping tests | 7 D, 1.25, 2.5, and 5 mg/kg, p.o. | Decrease in the number of voluntary activities and sleep latency, increase in sleep rate and duration of sleep | Up-regulate the content of GABA and gene expression of GABAAα1 and GABA Rγ2, and reduce the content of Glu | [131] |
Lignans | Schisandra chinensis | Gomisin N | Pentobarbital-induced sleeping test, caffeine-induced insomnia model, PCPA-induced insomnia model, and FLU-induced insomnia model | 7 D, 5, 15, and 45 mg/kg, i.p. | Reduce sleep latency, increase sleep duration and sleep onset | Activate 5-HTergic and GABAergic systems | [132] |
Lignans | Ziziphus jujuba | The terpenoids | Pentobarbital-induced sleeping tests | 30 D, 0.5 and 1.5 g/kg, p.o. | Reduce sleep latency and increase sleep duration | Increase 5-HT and GABA levels, promote GABAAR expression, and decrease Glu and NE levels and IL-1β expression | [97] |
Oil | Moringa oleifera Lam. Seed | Moringa oleifera Lam. Seed oil | Pentobarbital-induced sleeping tests | 30 D, 0.5 and 1.5 g/kg, p.o. | Reduce sleep latency and increase sleep duration | Increase levels of GABA and Glu and protein expression of GAD65 and GABAARα1 | [158] |
Categorisation | Jinhua Hecha | Extracts | Pentobarbital-induced sleeping tests | 44 D, 0.7, 1.6 and 2.3 g/kg, p.o. | Reduce spontaneous activity and sleep latency, increase sleep duration and fall asleep rate | Reduce Glu levels and maintain intestinal flora balance | [159] |
Polyphenol | Perilla frutescens | Rosmarinic acid | Pentobarbital-induced sleeping tests and measurement of EEG | 0.5, 1.0 and 2.0 mg/kg, p.o. | Decrease sleep latency, sleep/wake frequency, and REM sleep, increase sleep duration and NREM sleep | Increase the protein expression of GAD65/67, GABAARα3, α4, α5, β2, and γ3 | [150] |
Polyphenol | Cirsium japonicum | Apigenin | Pentobarbital-induced sleeping tests | 12.5, 25 and 50 mg/kg, i.p. | Increase sleep duration and sleep onset | Increase the protein expression of GAD65 and Cl− inward flux | [151] |
Whole food | Juglans regia | Pentobarbital-induced sleeping tests | 30 D, 220, 440, and 880 mg/kg, p.o. | Reduce sleep latency and increase sleep duration | Increase MT levels in the brain | [137] | |
Extraction | Lactuca sativa | Extracts | Vibration stress in Drosophila Melanogaster test, immobilization stress procedure in rats | 9 D, 80 and 120 mg/kg, p.o. | Increase sleep duration, NREM sleep, and δ wave | Enhance expression of GABAAα2 | [110] |
Extraction | Lactuca sativa | Extracts | Pentobarbital-induced sleeping tests and insomnia model with caffeine | 80, 100, 120, and 160 mg/kg, p.o | Increase sleep duration, NREM sleep, and δ wave | Bind to GABAAR | [111] |
Extraction | Lactuca sativa | Extracts | Pentobarbital-induced sleeping tests and insomnia model with caffeine | 21D, 50, 80, 100, and 150 mg/kg, p.o. | Increase sleep duration, NREM sleep, and δ wave | Enhance expression of GABAAR, GABAB1R, and 5-HT1A | [26] |
Extraction | Ziziphus jujuba and Radix Polygalae | Extracts | Pentobarbital-induced sleeping tests and PCPA induced insomnia model | 6D, 3.45, 6.9, and 13.8 mg/kg, p.o. | Reduce sleep latency, increase sleep duration and sleep onset | Increase GABA and 5-HT levels, decrease DA and NE levels, and regulate phenylalanine metabolism | [160] |
Extraction | Schisandra chinensis | Extracts | Pentobarbital-induced sleeping test, caffeine-induced insomnia model, PCPA-induced insomnia model, and FLU-induced insomnia model | 4D, 10, 25, 50, 100 and 200 mg/kg, p.o. | Reduce sleep latency and increase sleep duration | Activate 5-HTergic and GABAergic systems | [124] |
Extraction | Juglans regia | 3-hydroxy-4-iminobutyric acid | Pentobarbital-induced sleeping test | 14 D, 0.5 g/kg, p.o. | Reduce sleep latency and activities, increase sleep duration | Increase GABA level, influence intestinal flora (Flavonifractor, Parabacteroides, Bacteroides, and Lactobacillus) by modulating basal ganglia metabolism (neurotransmitters, acylcarnitines, purine nucleosides, etc.) | [147] |
Extraction | Poria cocos | Extracts | Pentobarbital-induced sleeping tests and caffeine-induced sleep disturbance animal model | 10, 20, 40, 80, 160, and 320 mg/kg, p.o. | Reduce sleep latency, increase sleep duration and NREM sleep | Increase the protein expression of GABAA, GABAAB, and Cl− inward flux | [156] |
Extraction | Vaccinium bracteatum Thunb. | Extracts | Pentobarbital-induced sleeping tests and PCPA-induced insomnia model | 29 D, 50 and 100 mg/kg, p.o. | Reduce sleep latency and activities, increase sleep duration | Activate 5-HT1A, increase the expression of GAD65/67, GABAAα5, β1, and β2 | [157] |
Extraction | Ashwagandha (Withania somnifera L. Dunal) | Extracts | Pentobarbital-induced sleeping test and caffeine-induced insomnia model and EEG | 28 D, 100 mg/kg, p.o. | Increase sleep duration, NREM sleep, and δ wave | Increase the content of GABA and the expression of GABAAR and GABABR | [161] |
Extraction | Leaf of Paullinia pinnata | Extracts | Phenobarbital sodium sleep-enhancing test | 5 D, 100, 200, and 400 mg/kg, p.o. | Reduce sleep latency and increase sleep duration | Increase GABA levels in the brain | [162] |
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pepin, J.L.; Martinez-Garcia, M.A. Sleep disorders and cerebrovascular disease: The long and winding road. Eur. Respir. J. 2020, 55, 1901977. [Google Scholar] [PubMed]
- Vasciaveo, V.; Casile, A.; Ferro, A.; Morello, G.; Tamagno, E.; Guglielmotto, M. Memory consolidation circuits and the glymphatic system in sleep. Alzheimer’s Dement. 2024, 20, e089231. [Google Scholar]
- Jones, S.E.; Maisha, F.I.; Strausz, S.J.; Lammi, V.; Cade, B.E.; Tervi, A.; Helaakoski, V.; Broberg, M.E.; Palotie, A.; Daly, M.; et al. The public health impact of poor sleep on severe COVID-19, influenza and upper respiratory infections. EBioMedicine 2023, 93, 104630. [Google Scholar]
- Ahmad, A.S.; Ottallah, H.; Maciel, C.B.; Strickland, M.; Doré, S. Role of the L-PGDS-PGD2-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep 2019, 42, zsz073. [Google Scholar]
- Lee, J.; Lim, S.; Kandimalla, M.; Ghatamaneni, S.; Thakkar, J.; Dewan, S.; Cogswell, P.M.; Gunter, J.L.; Botha, H.; Graff-Radford, J.; et al. Respiratory volume changes and CSF circulation during human NREM sleep. Alzheimer’s Dement. 2024, 20, e093200. [Google Scholar]
- Xiao, Q.; Lu, M.; Zhang, X.; Guan, J.; Li, X.; Wen, R.; Wang, N.; Qian, L.; Liao, Y.; Zhang, Z.; et al. Isolated theta waves originating from the midline thalamus trigger memory reactivation during NREM sleep in mice. Nat. Commun. 2024, 15, 9231. [Google Scholar] [PubMed]
- Navarrete, M.; Greco, V.; Rakowska, M.; Bellesi, M.; Lewis, P.A. Auditory stimulation during REM sleep modulates REM electrophysiology and cognitive performance. Commun. Biol. 2024, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Le Bras, A. Role of REM sleep in fear extinction. Lab Anim. 2024, 53, 127. [Google Scholar]
- Ba, W.; Nollet, M.; Yin, C.; Yu, X.; Wong, S.; Miao, A.; Beckwith, E.J.; Harding, E.C.; Ma, Y.; Yustos, R.; et al. A REM-active basal ganglia circuit that regulates anxiety. Curr. Biol. 2024, 34, 3301–3314.e3304. [Google Scholar]
- Masset, L.; Nigam, M.; Ladarre, A.; Vidailhet, M.; Leu-Semenescu, S.; Fossati, P.; Arnulf, I.; Maranci, J.-B. The dynamics of emotional behaviors in rapid eye movement sleep. Sleep 2023, 46, zsac285. [Google Scholar]
- Qin, H.; Fu, L.; Jian, T.; Jin, W.; Liang, M.; Li, J.; Chen, Q.; Yang, X.; Du, H.; Liao, X.; et al. REM sleep-active hypothalamic neurons may contribute to hippocampal social-memory consolidation. Neuron 2022, 110, 4000–4014.e4006. [Google Scholar]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar]
- Neculicioiu, V.S.; Colosi, I.A.; Costache, C.; Sevastre-Berghian, A.; Clichici, S. Time to Sleep?—A Review of the Impact of the COVID-19 Pandemic on Sleep and Mental Health. Int. J. Environ. Res. Public Health 2022, 19, 3497. [Google Scholar] [CrossRef]
- Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Therapeutic potential of hypnotic herbal medicines: A comprehensive review. Phytother. Res. 2024, 38, 3037–3059. [Google Scholar]
- Mensah-Osman, E.J. Insomnia in cancer patients. J. Clin. Oncol. 2022, 40, e18657. [Google Scholar]
- Sejbuk, M.; Mirończuk-Chodakowska, I.; Witkowska, A.M. Sleep Quality: A Narrative Review on Nutrition, Stimulants, and Physical Activity as Important Factors. Nutrients 2022, 14, 1912. [Google Scholar] [CrossRef] [PubMed]
- Berisha, D.E.; Rizvi, B.; Chappel-Farley, M.G.; Dave, A.; Meza, N.J.; Sattari, N.; Lui, K.K.; Chen, I.Y.; Tustison, N.J.; Neikrug, A.; et al. Local disruptions in non-rapid eye movement sleep expression are associated with cerebrovascular pathology and worse memory performance in older adults. Alzheimer’s Dement. 2024, 20, e090118. [Google Scholar]
- Chvilicek, M.M.; Titos, I.; Merrill, C.B.; Cummins-Beebee, P.N.; Chen, J.D.; Rodan, A.R.; Rothenfluh, A. Alcohol induces long-lasting sleep deficits in Drosophila via subsets of cholinergic neurons. Curr. Biol. 2025, 35, 1033–1046.e3. [Google Scholar] [CrossRef]
- Schmid, S.M.; Hallschmid, M.; Schultes, B. The metabolic burden of sleep loss. Lancet Diabetes Endocrinol. 2015, 3, 52–62. [Google Scholar]
- Woo, J.; Yang, H.; Yoon, M.; Gadhe, C.G.; Pae, A.N.; Cho, S.; Lee, C.J. 3-Carene, a Phytoncide from Pine Tree Has a Sleep-enhancing Effect by Targeting the GABAA-benzodiazepine Receptors. Exp. Neurobiol. 2019, 28, 593–601. [Google Scholar]
- Hoddy, K.K.; Potts, K.S.; Bazzano, L.A.; Kirwan, J.P. Sleep Extension: A Potential Target for Obesity Treatment. Curr. Diabetes Rep. 2020, 20, 81. [Google Scholar]
- Mims, K.N.; Kirsch, D. Sleep and Stroke. Sleep Med. Clin. 2016, 11, 39–51. [Google Scholar]
- Madari, S.; Golebiowski, R.; Mansukhani, M.P.; Kolla, B.P. Pharmacological Management of Insomnia. Neurotherapeutics 2021, 18, 44–52. [Google Scholar]
- Qian, J.; Zheng, L.; Su, G.; Huang, M.; Luo, D.; Zhao, M. Identification and Screening of Potential Bioactive Peptides with Sleep-Enhancing Effects in Bovine Milk Casein Hydrolysate. J. Agric. Food Chem. 2021, 69, 11246–11258. [Google Scholar] [PubMed]
- Xiao, F.Q.; Shao, S.; Zhang, H.Y.; Li, G.F.; Piao, S.L.; Zhao, D.Q.; Li, G.Z.; Yan, M.M. Neuroprotective effect of Ziziphi Spinosae Semen on rats with p-chlorophenylalanine-induced insomnia via activation of GABAA receptor. Front. Pharmacol. 2022, 13, 965308. [Google Scholar]
- Ahn, Y.; Lee, H.H.; Kim, B.-H.; Park, S.J.; Kim, Y.S.; Suh, H.J.; Jo, K. Heukharang lettuce (Lactuca sativa L.) leaf extract displays sleep-promoting effects through GABAA receptor. J. Ethnopharmacol. 2023, 314, 116602. [Google Scholar]
- Zhu, N.; Hao, Y.; Liu, X.; Li, Y. Effects of walnut oligopeptides on sleep and its mechanism. Chin. J. Reprod. Health 2020, 31, 147–150+173. [Google Scholar]
- Oishi, Y.; Saito, Y.C.; Sakurai, T. GABAergic modulation of sleep-wake states. Pharmacol. Ther. 2023, 249, 108505. [Google Scholar]
- Huang, L.; Zhu, W.; Li, N.; Zhang, B.; Dai, W.; Li, S.; Xu, H. Functions and mechanisms of adenosine and its receptors in sleep regulation. Sleep Med. 2024, 115, 210–217. [Google Scholar]
- Porkka-Heiskanen, T.; Zitting, K.-M.; Wigren, H.-K. Sleep, its regulation and possible mechanisms of sleep disturbances. Acta Physiol. 2013, 208, 311–328. [Google Scholar]
- Petzold, A.; Gilestro, G.F. ninna nanna links circadian and homeostatic sleep drive in Drosophila. bioRxiv 2024. [Google Scholar] [CrossRef]
- Perucca, E.; Bialer, M.; White, H.S. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: I. Role of GABA as a Modulator of Seizure Activity and Recently Approved Medications Acting on the GABA System. CNS Drugs 2023, 37, 755–779. [Google Scholar]
- Chaturvedi, R.; Emery, P. Fly into tranquility: GABA’s role in Drosophila sleep. Curr. Opin. Insect Sci. 2024, 64, 101219. [Google Scholar] [CrossRef] [PubMed]
- Philip, A.B.; Brohan, J.; Goudra, B. The Role of GABA Receptors in Anesthesia and Sedation: An Updated Review. CNS Drugs 2025, 39, 39–54. [Google Scholar]
- Sikes-Keilp, C.; Rubinow, D.R. GABA-ergic Modulators: New Therapeutic Approaches to Premenstrual Dysphoric Disorder. CNS Drugs 2023, 37, 679–693. [Google Scholar] [PubMed]
- Wu, H.; Xie, L.; Chen, Q.; Xu, F.; Dai, A.; Ma, X.; Xie, S.; Li, H.; Zhu, F.; Jiao, C.; et al. Activation of GABAergic neurons in the dorsal raphe nucleus alleviates hyperalgesia induced by ovarian hormone withdrawal. Pain 2025, 166, 759–772. [Google Scholar]
- Mou, Y.; Zhang, Y.; Zheng, Y.; He, G.; Xu, Z.-X.; Xiao, X.; Ping, Y. Intermittent Vibration Induces Sleep via an Allatostatin A-GABA Signaling Pathway and Provides Broad Benefits in Alzheimer’s Disease Models. Adv. Sci. 2025, 12, 2411768. [Google Scholar]
- Li, R.; Pan, Y.; Jing, N.; Wang, T.; Shi, Y.; Hao, L.; Zhu, J.; Lu, J. Flavonoids from mulberry leaves exhibit sleep-improving effects via regulating GABA and 5-HT receptors. J. Ethnopharmacol. 2025, 337, 118734. [Google Scholar] [CrossRef]
- Kim, M.; Kim, Y.; Lee, H.W.; Kim, K.-M.; Kim, S.; Oh, S. The Improvement in Sleep Quality by Zizyphi Semen in Rodent Models Through GABAergic Transmission Regulation. Nutrients 2024, 16, 4266. [Google Scholar] [CrossRef]
- Huang, W.; Cao, L. Targeting GABA signalling for cancer treatment. Nat. Cell Biol. 2022, 24, 131–132. [Google Scholar]
- Andersen, J.V.; Jakobsen, E.; Westi, E.W.; Lie, M.E.K.; Voss, C.M.; Aldana, B.I.; Schousboe, A.; Wellendorph, P.; Bak, L.K.; Pinborg, L.H.; et al. Extensive astrocyte metabolism of γ-aminobutyric acid (GABA) sustains glutamine synthesis in the mammalian cerebral cortex. Glia 2020, 68, 2601–2612. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, J.S.; Mikkelsen, A.N.L.; Wellendorph, P. Ways of modulating GABA transporters to treat neurological disease. Expert Opin. Ther. Targets 2024, 28, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.V.; Schousboe, A.; Wellendorph, P. Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling. Essays Biochem. 2023, 67, 77–91. [Google Scholar] [PubMed]
- Siegel, J.M. The neurotransmitters of sleep. J. Clin. Psychiatry 2004, 65 (Suppl. S16), 4–7. [Google Scholar]
- Ghit, A.; Assal, D.; Al-Shami, A.S.; Hussein, D.E.E. GABAA receptors: Structure, function, pharmacology, and related disorders. J. Genet. Eng. Biotechnol. 2021, 19, 123. [Google Scholar] [CrossRef]
- Benkherouf, A.Y.; Eerola, K.; Soini, S.L.; Uusi-Oukari, M. Humulone Modulation of GABAA Receptors and Its Role in Hops Sleep-Promoting Activity. Front. Neurosci. 2020, 14, 594708. [Google Scholar] [CrossRef]
- Kim, J.J.; Hibbs, R.E. Direct Structural Insights into GABAA Receptor Pharmacology. Trends Biochem. Sci. 2021, 46, 502–517. [Google Scholar] [CrossRef]
- Wang, X.; Xia, X.; Song, X.; Zhou, Y.; Ma, M.; Ren, Y.; Chen, X.; Xia, Z.; Guo, Y.; Song, C. Therapeutic potential of rutin in premenstrual depression: Evidence from in vivo and in vitro studies. Front. Pharmacol. 2025, 15, 1525753. [Google Scholar] [CrossRef]
- Xue, C.; Li, G.; Zheng, Q.; Gu, X.; Shi, Q.; Su, Y.; Chu, Q.; Yuan, X.; Bao, Z.; Lu, J.; et al. Tryptophan metabolism in health and disease. Cell Metab. 2023, 35, 1304–1326. [Google Scholar] [CrossRef]
- Wang, X.; Liu, P.; Alterovitz, G.; Zhou, S.; Grinstaff, M.W.; Brody, D.L.; Chang, S.L.; Li, S.; Sinha, B.; Zhang, A.; et al. Tryptophan Metabolism in Alzheimer’s Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis. 2024, 15, 2168–2190. [Google Scholar]
- Ma, N.; He, T.; Johnston, L.J.; Ma, X. Host–microbiome interactions: The aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut Microbes 2020, 11, 1203–1219. [Google Scholar]
- Xie, X.; Ding, D.; Bai, D.; Zhu, Y.; Sun, W.; Sun, Y.; Zhang, D. Melatonin biosynthesis pathways in nature and its production in engineered microorganisms. Synth. Syst. Biotechnol. 2022, 7, 544–553. [Google Scholar] [PubMed]
- Huang, H.; Wang, Z.; Weng, S.-J.; Sun, X.-H.; Yang, X.-L. Neuromodulatory role of melatonin in retinal information processing. Prog. Retin. Eye Res. 2013, 32, 64–87. [Google Scholar]
- Cespuglio, R. Serotonin: Its place today in sleep preparation, triggering or maintenance. Sleep Med. 2018, 49, 31–39. [Google Scholar] [PubMed]
- Jenkins, T.; Nguyen, J.; Polglaze, K.; Bertrand, P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.J.; Quinlan, M.A.; Blakely, R.D. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery. ACS Chem. Neurosci. 2017, 8, 932–942. [Google Scholar] [CrossRef]
- Wang, H.; Gu, Y.; Khalid, R.; Chen, X.; Han, T. Herbal medicines for insomnia through regulating 5-hydroxytryptamine receptors: A systematic review. Chin. J. Nat. Med. 2023, 21, 483–498. [Google Scholar] [CrossRef]
- Hopkins, S.C.; Dedic, N.; Koblan, K.S. Effect of TAAR1/5-HT1A agonist SEP-363856 on REM sleep in humans. Transl. Psychiatry 2021, 11, 228. [Google Scholar]
- Monti, J.M. Serotonin control of sleep-wake behavior. Sleep Med. Rev. 2011, 15, 269–281. [Google Scholar]
- Landolt, H.-P.; Wehrle, R. Antagonism of serotonergic 5-HT2A/2C receptors: Mutual improvement of sleep, cognition and mood? Eur. J. Neurosci. 2009, 29, 1795–1809. [Google Scholar] [CrossRef]
- Ly, S.; Pishdari, B.; Lok, L.L.; Hajos, M.; Kocsis, B. Activation of 5-HT6 Receptors Modulates Sleep–Wake Activity and Hippocampal Theta Oscillation. ACS Chem. Neurosci. 2013, 4, 191–199. [Google Scholar]
- Bonaventure, P.; Kelly, L.; Aluisio, L.; Shelton, J.; Lord, B.; Galici, R.; Miller, K.; Atack, J.; Lovenberg, T.W.; Dugovic, C. Selective Blockade of 5-Hydroxytryptamine (5-HT)7 Receptors Enhances 5-HT Transmission, Antidepressant-Like Behavior, and Rapid Eye Movement Sleep Suppression Induced by Citalopram in Rodents. J. Pharmacol. Exp. Ther. 2007, 321, 690–698. [Google Scholar]
- Staner, L.; Linker, T.; Toussaint, M.; Danjou, P.; Roegel, J.C.; Luthringer, R.; Le Fur, G.; Macher, J.P. Effects of the selective activation of 5-HT3 receptors on sleep: A polysomnographic study in healthy volunteers. Eur. Neuropsychopharmacol. 2001, 11, 301–305. [Google Scholar]
- Deryabina, I.B.; Andrianov, V.V.; Muranova, L.N.; Bogodvid, T.K.; Gainutdinov, K.L. Effects of Thryptophan Hydroxylase Blockade by P-Chlorophenylalanine on Contextual Memory Reconsolidation after Training of Different Intensity. Int. J. Mol. Sci. 2020, 21, 2087. [Google Scholar] [CrossRef]
- Dong, Y.-J.; Jiang, N.-H.; Zhan, L.-H.; Teng, X.; Fang, X.; Lin, M.-Q.; Xie, Z.-Y.; Luo, R.; Li, L.-Z.; Li, B.; et al. Soporific effect of modified Suanzaoren Decoction on mice models of insomnia by regulating Orexin-A and HPA axis homeostasis. Biomed. Pharmacother. 2021, 143, 112141. [Google Scholar]
- Cardinali, D.P.; Srinivasan, V.; Brzezinski, A.; Brown, G.M. Melatonin and its analogs in insomnia and depression. J. Pineal Res. 2012, 52, 365–375. [Google Scholar]
- Mazzoccoli, G.; Kvetnoy, I.; Mironova, E.; Yablonskiy, P.; Sokolovich, E.; Krylova, J.; Carbone, A.; Anderson, G.; Polyakova, V. The melatonergic pathway and its interactions in modulating respiratory system disorders. Biomed. Pharmacother. 2021, 137, 111397. [Google Scholar]
- Liang, C.; Song, R.; Zhang, J.; Yao, J.; Guan, Z.; Zeng, X. Melatonin enhances NK cell function in aged mice by increasing T-bet expression via the JAK3-STAT5 signaling pathway. Immun. Ageing 2024, 21, 59. [Google Scholar]
- Redburn, D.A.; Mitchell, C.K. Darkness stimulates rapid synthesis and release of melatonin in rat retina. Visual Neurosci. 1989, 3, 391–403. [Google Scholar]
- Tosini, G.; Fukuhara, C. Photic and circadian regulation of retinal melatonin in mammals. J. Neuroendocrinol. 2003, 15, 364–369. [Google Scholar]
- Gobbi, G.; Comai, S. Sleep well. Untangling the role of melatonin MT1 and MT2 receptors in sleep. J. Pineal Res. 2019, 66, e12544. [Google Scholar] [CrossRef]
- Yi, G.; Safdar, B.; Zhang, Y.; Li, Y.; Liu, X. A study of the mechanism of small-molecule soybean-protein-derived peptide supplement to promote sleep in a mouse model. RSC Adv. 2020, 10, 11264–11273. [Google Scholar] [CrossRef]
- Brandt, J.; Bressi, J.; Lê, M.-L.; Neal, D.; Cadogan, C.; Witt-Doerring, J.; Witt-Doerring, M.; Wright, S. Prescribing and deprescribing guidance for benzodiazepine and benzodiazepine receptor agonist use in adults with depression, anxiety, and insomnia: An international scoping review. EClinicalMedicine 2024, 70, 102507. [Google Scholar] [CrossRef]
- Lin, H.; Xu, Y.; Xiong, H.; Wang, L.; Shi, Y.; Wang, D.; Wang, Z.; Ren, J.; Wang, S. Mechanism of action of Panax ginseng alcohol extract based on orexin-mediated autophagy in the treatment of sleep and cognition in aged sleep-deprived rats. J. Ethnopharmacol. 2025, 337, 118907. [Google Scholar] [CrossRef]
- Kang, J.-Y.; Kim, D.-Y.; Lee, J.-S.; Hwang, S.-J.; Kim, G.-H.; Hyun, S.-H.; Son, C.-G. Korean Red Ginseng Ameliorates Fatigue via Modulation of 5-HT and Corticosterone in a Sleep-Deprived Mouse Model. Nutrients 2021, 13, 3121. [Google Scholar] [CrossRef]
- Mo, L.; Jing, H.; Du, X.; Zhao, C.; Lin, Y.; Li, J.; Wang, H. Goat and cow milk differ in altering the microbiota composition and neurotransmitter levels in insomnia mouse models. Food Funct. 2023, 14, 6526–6540. [Google Scholar] [CrossRef]
- Komada, Y.; Okajima, I.; Kuwata, T. The Effects of Milk and Dairy Products on Sleep: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 9440. [Google Scholar] [CrossRef]
- dela Peña, I.J.I.; Kim, H.J.; de la Peña, J.B.; Kim, M.; Botanas, C.J.; You, K.Y.; Woo, T.; Lee, Y.S.; Jung, J.-C.; Kim, K.-M.; et al. A tryptic hydrolysate from bovine milk αs1-casein enhances pentobarbital-induced sleep in mice via the GABAA receptor. Behav. Brain Res. 2016, 313, 184–190. [Google Scholar] [CrossRef]
- Yayeh, T.; Leem, Y.-H.; Kim, K.-M.; Jung, J.-C.; Schwarz, J.; Oh, K.-W.; Oh, S. Administration of Alphas1-Casein Hydrolysate Increases Sleep and Modulates GABAA Receptor Subunit Expression. Biomol. Ther. 2018, 26, 268–273. [Google Scholar] [CrossRef]
- Miclo, L.; Perrin, E.; Driou, A.; Papadopoulos, V.; Boujrad, N.; Vanderesse, R.; Boudier, J.-F.; Desor, D.; Linden, G.; Gaillard, J.-L. Characterization of α-casozepine, a tryptic peptide from bovine αs1-casein with benzodiazepine-like activity. FASEB J. 2001, 15, 1780–1782. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, L.; Lan, Y.; Liang, C.; Liu, X.; Li, J.; Liu, F.; Miao, J.; Chen, Y.; Cao, Y.; et al. Four novel sleep-promoting peptides screened and identified from bovine casein hydrolysates using a patch-clamp model in vitro and Caenorhabditis elegans in vivo. Food Funct. 2023, 14, 6142–6156. [Google Scholar] [CrossRef]
- Qian, J.; Yu, F.; Zheng, L.; Luo, D.; Zhao, M. Comparison of the Protective Effects of Casein Hydrolysate Containing Tyr-Pro-Val-Glu-Pro-Phe and Casein on the Behaviors and Peripheral and Brain Functions in Mice with Chronic-Stress-Induced Anxiety and Insomnia. J. Agric. Food Chem. 2024, 72, 11515–11530. [Google Scholar]
- Yamamura, S.; Morishima, H.; Kumano-go, T.; Suganuma, N.; Matsumoto, H.; Adachi, H.; Sigedo, Y.; Mikami, A.; Kai, T.; Masuyama, A.; et al. The effect of Lactobacillus helveticus fermented milk on sleep and health perception in elderly subjects. Eur. J. Clin. Nutr. 2007, 63, 100–105. [Google Scholar] [CrossRef]
- Yu, L.; Han, X.; Cen, S.; Duan, H.; Feng, S.; Xue, Y.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; et al. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiol. Res. 2020, 233, 126409. [Google Scholar] [CrossRef]
- Popstoyanova, D.; Gerasimova, A.; Gentscheva, G.; Nikolova, S.; Gavrilova, A.; Nikolova, K. Ziziphus jujuba: Applications in the Pharmacy and Food Industry. Plants 2024, 13, 2724. [Google Scholar] [CrossRef]
- Qin, S.H.; Yan, F.; Shuai, E.; Xiong, P.; Tang, S.N.; Yu, K.Q.; Zhang, M.; Cheng, Y.C.; Cai, W. Comprehensive characterization of multiple components of using UHPLC-Q-Exactive Orbitrap Mass Spectrometers. Food Sci. Nutr. 2022, 10, 4270–4295. [Google Scholar]
- Liu, T.; Huang, W.; Zhao, T.; Nan, L.; Sun, J.; Liu, Q.; Huang, L.; Lin, X.; Gong, G.; Wang, Z. Comparative analysis of the physicochemical properties and biological activities of Ziziphus Jujuba cv. Goutouzao polysaccharides obtained by fractional precipitation. J. Food Meas. Charact. 2023, 17, 1046–1057. [Google Scholar] [CrossRef]
- Mi, W.; Guo, Y.-J.; Hu, P.; Di, X. Three new sesquineolignans from the seeds of Ziziphus jujuba. Nat. Prod. Res. 2022, 36, 3638–3643. [Google Scholar]
- Guo, S.; Tang, Y.P.; Duan, J.A.; Su, S.L.; Ding, A.W. Two new terpenoids from fruits of Ziziphus jujuba. Chin. Chem. Lett. 2009, 20, 197–200. [Google Scholar]
- Aafi, E.; Ardakani, M.R.S.; Ardakani, M.M. Jujube (Ziziphus jujuba Mill. (Rhamnaceae)): A review on its pharmacological properties and phytochemistry. Tradit. Med. Res. 2022, 7, 38. [Google Scholar]
- Jiang, J.-G.; Huang, X.-J.; Chen, J.; Lin, Q.-S. Comparison of the sedative and hypnotic effects of flavonoids, saponins, and polysaccharides extracted from Semen Ziziphus jujube. Nat. Prod. Res. 2007, 21, 310–320. [Google Scholar]
- Zahra, S.; Sara, N.-S.; Mohammad, S.A.; Mahin, R.; Seyed, A.E.; Amirhossein, S. Therapeutic Effects of Ziziphus jujuba Mill. Fruit in Traditional and Modern Medicine: A Review. Med. Chem. 2020, 16, 1069–1088. [Google Scholar]
- Ji, X.; Hou, C.; Yan, Y.; Shi, M.; Liu, Y. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int. J. Biol. Macromol. 2020, 149, 1008–1018. [Google Scholar] [CrossRef]
- Li, D.; Li, W.; Shi, W.; Wu, X.; Liu, X.; Gao, P. Exploring the Active Components of Ziziphus jujuba Mill. in Treatment of Depression by Network Pharmacology Combined with Neuroprotective Effects in SH-SY5Y Cells. Pharm. Chem. J. 2023, 57, 712–724. [Google Scholar]
- Bai, L.; Cui, X.; Cheng, N.; Cao, W.; Wu, Y.; Guo, S.; Zhang, L.; Ho, C.-T.; Bai, N. Hepatoprotective standardized EtOH–water extract of the leaves of Ziziphus jujuba. Food Funct. 2017, 8, 816–822. [Google Scholar]
- Fang, S.; Chen, Q. Research progress on the pharmacological mechanism of sour jujube kernel and its extract in treating insomnia. Global Tradit. Chin. Med. 2024, 17, 1440–1445. [Google Scholar]
- Sun, M.; Li, M.; Cui, X.; Yan, L.; Pei, Y.; Wang, C.; Guan, C.; Zhang, X. Terpenoids derived from Semen Ziziphi Spinosae oil enhance sleep by modulating neurotransmitter signaling in mice. Heliyon 2024, 10, e26979. [Google Scholar]
- Hua, Y.; Guo, S.; Xie, H.; Zhu, Y.; Yan, H.; Tao, W.-W.; Shang, E.-X.; Qian, D.-W.; Duan, J.-A. Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou Seed Ameliorates Insomnia in Rats by Regulating Metabolomics and Intestinal Flora Composition. Front. Pharmacol. 2021, 12, 653767. [Google Scholar]
- Hua, Y.; Guo, S.; Zhu, Y.; Zhu, Z.-Y.; Xie, H.; Tao, W.-W.; Duan, J.-A. Effect of Ziziphi Spinosae Semen on HPA Axis Function in Rats with Insomnia. Mod. Chin. Med. 2022, 24, 2400–2407. [Google Scholar]
- Cao, J.-X.; Zhang, Q.-Y.; Cui, S.-Y.; Cui, X.-Y.; Zhang, J.; Zhang, Y.-H.; Bai, Y.-J.; Zhao, Y.-Y. Hypnotic effect of jujubosides from Semen Ziziphi Spinosae. J. Ethnopharmacol. 2010, 130, 163–166. [Google Scholar]
- You, Z.-L.; Xia, Q.; Liang, F.-R.; Tang, Y.-J.; Xu, C.-L.; Huang, J.; Zhao, L.; Zhang, W.-Z.; He, J.-J. Effects on the expression of GABAA receptor subunits by jujuboside A treatment in rat hippocampal neurons. J. Ethnopharmacol. 2010, 128, 419–423. [Google Scholar] [CrossRef]
- Wang, X.-X.; Ma, G.-I.; Xie, J.-B.; Pang, G.-C. Influence of JuA in evoking communication changes between the small intestines and brain tissues of rats and the GABAA and GABAB receptor transcription levels of hippocampal neurons. J. Ethnopharmacol. 2015, 159, 215–223. [Google Scholar] [CrossRef]
- Song, P.; Zhang, Y.; Ma, G.; Zhang, Y.; Zhou, A.; Xie, J. Gastrointestinal Absorption and Metabolic Dynamics of Jujuboside A, A Saponin Derived from the Seed of Ziziphus jujuba. J. Agric. Food Chem. 2017, 65, 8331–8339. [Google Scholar] [CrossRef]
- Ma, Y.; Han, H.; Eun, J.S.; Kim, H.-C.; Hong, J.-T.; Oh, K.-W. Sanjoinine A Isolated from Zizyphi Spinosi Semen Augments Pentobarbital-Induced Sleeping Behaviors through the Modification of GABA-ergic Systems. Biol. Pharm. Bull. 2007, 30, 1748–1753. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kim, E.H.; Park, S.B.; Lee, J.Y.; Yoon, S.W. Traditional Herbal Medicine for Insomnia in Patients With Cancer: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2021, 12, 753140. [Google Scholar] [CrossRef]
- Yang, X.; Gil, M.; Yang, Q.C.; Tomás-Barberán, F.A. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4–45. [Google Scholar] [CrossRef]
- Hassanpour Moghadam, M.; Ghasemi, Z.; Sepahi, S.; Rahbarian, R.; Mosannen Mozaffari, H.; Mohajeri, S.A. Hypolipidemic effect of Lactuca sativa seed extract, an adjunctive treatment, in patients with hyperlipidemia: A randomized double-blind placebo-controlled pilot trial. J. Herbal Med. 2020, 23, 100373. [Google Scholar] [CrossRef]
- Sarma, U.; Tr, B. Dietary phytonutrients in common green leafy vegetables and the significant role of processing techniques on spinach: A review. Food Prod. Process. Nutr. 2024, 6, 10. [Google Scholar] [CrossRef]
- Ghorbani, A.; Rakhshandeh, H.; Sadeghnia, H.R. Potentiating Effects of Lactuca sativa on Pentobarbital-Induced Sleep. Iran. J. Pharm. Res. 2013, 12, 401–406. [Google Scholar]
- Jo, K.; Kim, S.; Ahn, Y.; Suh, H.J. Effects of Green Lettuce Leaf Extract on Sleep Disturbance Control in Oxidative Stress-Induced Invertebrate and Vertebrate Models. Antioxidants 2021, 10, 970. [Google Scholar] [CrossRef]
- Kim, H.-W.; Suh, H.J.; Choi, H.-S.; Hong, K.-B.; Jo, K. Effectiveness of the Sleep Enhancement by Green Romaine Lettuce (Lactuca sativa) in a Rodent Model. Biol. Pharm. Bull. 2019, 42, 1726–1732. [Google Scholar] [CrossRef]
- Sayson, L.V.; Jeon, S.J.; Ortiz, D.M.; Lee, H.J.; Campomayor, N.B.; Kim, H.J.; Kim, M. Heukharang (Lactuca sativa L.) extracts enhanced the sleep behavior of mice: Potential involvement of adenosine A1 and A2A receptors. Sleep Biol. Rhythms 2024, 22, 385–394. [Google Scholar]
- Yakoot, M.; Helmy, S.; Fawal, K. Pilot study of the efficacy and safety of lettuce seed oil in patients with sleep disorders. Int. J. Gen. Med. 2011, 4, 451–456. [Google Scholar]
- Pour, Z.S.; Hosseinkhani, A.; Asadi, N.; Shahraki, H.R.; Vafaei, H.; Kasraeian, M.; Bazrafshan, K.; Faraji, A. Double-blind randomized placebo-controlled trial on efficacy and safety of Lactuca sativa L. seeds on pregnancy-related insomnia. J. Ethnopharmacol. 2018, 227, 176–180. [Google Scholar]
- Ye, X.-W.; Li, C.-S.; Zhang, H.-X.; Li, Q.; Cheng, S.-Q.; Wen, J.; Wang, X.; Ren, H.-M.; Xia, L.-J.; Wang, X.-X.; et al. Saponins of ginseng products: A review of their transformation in processing. Front. Pharmacol. 2023, 14, 1177819. [Google Scholar]
- Ma, Y.; Kim, Y.B.; Nam, S.Y.; Cheong, J.H.; Park, S.H.; Kim, H.J.; Hong, J.T.; Oh, K.W. Effects of red ginseng extract on sleep architecture and electroencephalogram power spectra in rats. Sleep Biol. Rhythms 2009, 7, 78–83. [Google Scholar] [CrossRef]
- Chung, S.I.; Nam, S.J.; Xu, M.; Kang, M.Y.; Lee, S.C. Aged ginseng (Panax ginseng Meyer) reduces blood glucose levels and improves lipid metabolism in high fat diet-fed mice. Food Sci. Biotechnol. 2016, 25, 267–273. [Google Scholar]
- Shin, B.-K.; Kwon, S.W.; Park, J.H. Chemical diversity of ginseng saponins from Panax ginseng. J. Ginseng Res. 2015, 39, 287–298. [Google Scholar]
- Xu, Y.-P.; Cui, X.-Y.; Liu, Y.-T.; Cui, S.-Y.; Zhang, Y.-H. Ginsenoside Rg1 promotes sleep in rats by modulating the noradrenergic system in the locus coeruleus and serotonergic system in the dorsal raphe nucleus. Biomed. Pharmacother. 2019, 116, 109009. [Google Scholar] [CrossRef]
- Jiang, N.; Yao, C.; Zhang, Y.; Sun, X.; Choudhary, M.I.; Liu, X. Ginsenoside Rg1 Attenuates Chronic Sleep Deprivation-Induced Hippocampal Mitochondrial Dysfunction and Improves Memory by the AMPK-SIRT3 Pathway. J. Agric. Food Chem. 2024, 72, 2362–2373. [Google Scholar]
- Lee, B.-H.; Kim, H.-J.; Chung, L.; Nah, S.-Y. Ginsenoside Rg3 regulates GABAA receptor channel activity: Involvement of interaction with the γ2 subunit. Eur. J. Pharmacol. 2013, 705, 119–125. [Google Scholar] [CrossRef]
- Shao, J.; Zheng, X.; Qu, L.; Zhang, H.; Yuan, H.; Hui, J.; Mi, Y.; Ma, P.; Fan, D. Ginsenoside Rg5/Rk1 ameliorated sleep via regulating the GABAergic/serotoninergic signaling pathway in a rodent model. Food Funct. 2020, 11, 1245–1257. [Google Scholar]
- Mou, N.; Duan, Z.; Ma, P.; Fu, R.; Fan, D. Study on the hypnotic effect of rare protopanaxadiol-type and protopanaxatriol-type ginsenosides. RSC Adv. 2019, 9, 20483–20491. [Google Scholar]
- Zhu, H.; Zhang, L.; Wang, G.; He, Z.; Zhao, Y.; Xu, Y.; Gao, Y.; Zhang, L. Sedative and hypnotic effects of supercritical carbon dioxide fluid extraction from Schisandra chinensis in mice. J. Food Drug Anal. 2016, 24, 831–838. [Google Scholar]
- Yang, K.; Qiu, J.; Huang, Z.; Yu, Z.; Wang, W.; Hu, H.; You, Y. A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils. J. Ethnopharmacol. 2022, 284, 114759. [Google Scholar]
- Chen, S.; Qin, F.; Yang, Y.; Zhao, Y.; Xiao, S.; Li, W.; Akihisa, T.; Jantrawut, P.; Ji, J.; Zhang, J. Extraction, purification, structural characterization, and bioactivities of the genus Schisandra polysaccharides: A review. Int. J. Biol. Macromol. 2024, 262, 130257. [Google Scholar]
- Wu, L.; Guo, X.; Gao, Y.; Yu, W.; Qin, W.; Kuang, H.; Su, Y. Untargeted metabolomics reveals intervention effects of wine-processed Schisandra chinensis polysaccharide on Alzheimer’s disease mice. Int. J. Biol. Macromol. 2024, 267, 130804. [Google Scholar]
- Xu, H.; Wang, W.; Sun, Y.; Li, Y.; Jiang, Y.; Deng, C.; Song, X.; Zhang, D. A systematic review on triterpenoids from genus Schisandra: Botany, traditional use, pharmacology and modern application. Arab. J. Chem. 2023, 16, 105178. [Google Scholar]
- Wang, M.; Li, N.; Jing, S.; Wang, C.; Sun, J.; Li, H.; Liu, J.; Chen, J. Schisandrin B exerts hypnotic effects in PCPA-treated rats by increasing hypothalamic 5-HT and γ-aminobutyric acid levels. Exp. Ther. Med. 2020, 20, 142. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.; Sun, W.; Li, N.; Yu, Z.; Zhu, K.; Gao, J.; Wang, C.; Sun, J.; Chen, J.; et al. Schisantherin A Exerts Sedative and Hypnotic Effects Through Regulating GABA and its Receptor in Mice and Rats. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef]
- Li, N.; Liu, J.; Wang, M.; Yu, Z.; Zhu, K.; Gao, J.; Wang, C.; Sun, J.; Chen, J.; Li, H. Sedative and hypnotic effects of Schisandrin B through increasing GABA/Glu ratio and upregulating the expression of GABAA in mice and rats. Biomed. Pharmacother. 2018, 103, 509–516. [Google Scholar]
- Zhang, C.; Mao, X.; Zhao, X.; Liu, Z.; Liu, B.; Li, H.; Bi, K.; Jia, Y. Gomisin N isolated from Schisandra chinensis augments pentobarbital-induced sleep behaviors through the modification of the serotonergic and GABAergic system. Fitoterapia 2014, 96, 123–130. [Google Scholar]
- Bao, Y.; Zhou, H.; Fu, Y.; Wang, C.; Huang, Q. Zhumian Granules improves PCPA-induced insomnia by regulating the expression level of neurotransmitters and reducing neuronal apoptosis. J. Ethnopharmacol. 2024, 327, 118048. [Google Scholar]
- Xu, Z.-X.; Zhang, J.-L.; Li, F.-Z.; Xu, B.; Xia, J.; Wang, P.; Xie, G.-J. AnMei decoction ameliorates cognitive impairment in rats with chronic sleep deprivation by mitigating hippocampal neuroinflammation and restoring synaptic architecture. J. Ethnopharmacol. 2025, 338, 119101. [Google Scholar]
- Reiter, R.J.; Manchester, L.C.; Tan, D.-X. Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005, 21, 920–924. [Google Scholar]
- Bourais, I.; Elmarrkechy, S.; Taha, D.; Mourabit, Y.; Bouyahya, A.; El Yadini, M.; Machich, O.; El Hajjaji, S.; El Boury, H.; Dakka, N.; et al. A Review on Medicinal Uses, Nutritional Value, and Antimicrobial, Antioxidant, Anti-Inflammatory, Antidiabetic, and Anticancer Potential Related to Bioactive Compounds of J. regia. Food Rev. Int. 2023, 39, 6199–6249. [Google Scholar]
- Wang, S.; Li, H.-Y.; Dai, L.-Y.; Chang, P.; Mi, S.-Q.; Rong, R.-f. Effects of Walnuts on Sleep Improvement in Mice and Its Mechanism. Acta Nutr. Sin. 2017, 39, 189–193. [Google Scholar]
- Sharma, P.; Ravikumar, G.; Kalaiselvi, M.; Gomathi, D.; Uma, C. In vitro antibacterial and free radical scavenging activity of green hull of Juglans regia. J. Pharm. Anal. 2013, 3, 298–302. [Google Scholar]
- Stefanucci, A.; Marinaccio, L.; Llorent-Martínez, E.J.; Zengin, G.; Bender, O.; Dogan, R.; Atalay, A.; Adegbite, O.; Ojo, F.O.; Onaolapo, A.Y.; et al. Assessment of the in-vitro toxicity and in-vivo therapeutic capabilities of Juglans regia on human prostate cancer and prostatic hyperplasia in rats. Food Biosci. 2024, 57, 103539. [Google Scholar] [CrossRef]
- Tan, B.; Wang, Y.; Zhang, X.; Sun, X. Recent Studies on Protective Effects of Walnuts against Neuroinflammation. Nutrients 2022, 14, 4360. [Google Scholar] [CrossRef]
- Wang, S.; Su, G.; Fan, J.; Xiao, Z.; Zheng, L.; Zhao, M.; Wu, J. Arginine-Containing Peptides Derived from Walnut Protein Against Cognitive and Memory Impairment in Scopolamine-Induced Zebrafish: Design, Release, and Neuroprotection. J. Agric. Food Chem. 2022, 70, 11579–11590. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M. Walnuts Decrease Risk of Cardiovascular Disease: A Summary of Efficacy and Biologic Mechanisms. J. Nutr. 2014, 144, 547S–554S. [Google Scholar] [CrossRef]
- Nasiry, D.; Khalatbary, A.R.; Ghaemi, A.; Ebrahimzadeh, M.A.; Hosseinzadeh, M.H. Topical administration of Juglans regia L. leaf extract accelerates diabetic wound healing. BMC Complement. Med. Ther. 2022, 22, 255. [Google Scholar] [CrossRef]
- Kamoun, A.; Yahia, A.; Farjallah, M.A.; Maaloul, R.; Marzougui, H.; Bouaziz, M.; Souissi, N.; Elleuch, M.H.; Hammouda, O. Concurrent training associated with moderate walnut consumption improved isokinetic strength, subjective sleep quality, cognitive performance and postural balance in elderly active men: A randomized controlled trial. Aging Clin. Exp. Res. 2024, 36, 50. [Google Scholar] [CrossRef]
- Wang, S.; Su, G.; Zhang, Q.; Zhao, T.; Liu, Y.; Zheng, L.; Zhao, M. Walnut (Juglans regia) Peptides Reverse Sleep Deprivation-Induced Memory Impairment in Rat via Alleviating Oxidative Stress. J. Agric. Food Chem. 2018, 66, 10617–10627. [Google Scholar] [CrossRef]
- Hong, Q. Isolation and Identification of the Antioxidant, Sedative and Hypnotic Active Components of Diaphragma juglandis Fructus and Mechanism Research. Master’s Thesis, Jiangnan University, Wuxi, China, 2021. [Google Scholar]
- Ji, J.; Ye, Y.; Sheng, L.; Sun, J.; Hong, Q.; Liu, C.; Ding, J.; Geng, S.; Xu, D.; Zhang, Y.; et al. Sleep Promotion by 3-Hydroxy-4-Iminobutyric Acid in Walnut Diaphragma juglandis Fructus. Research 2023, 6, 0216. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Tao, N.; Wang, X.; Deng, S.; Li, M.; Zu, Y.; Xu, C. Small Peptides Isolated from Enzymatic Hydrolyzate of Pneumatophorus japonicus Bone Promote Sleep by Regulating Circadian Rhythms. Foods 2023, 12, 464. [Google Scholar] [CrossRef]
- Lv, Y.-B.; Zhou, Q.; Yan, J.-X.; Luo, L.-S.; Zhang, J.-L. Enzymolysis peptides from Mauremys mutica plastron improve the disorder of neurotransmitter system and facilitate sleep-promoting in the PCPA-induced insomnia mice. J. Ethnopharmacol. 2021, 274, 114047. [Google Scholar] [CrossRef]
- Kwon, Y.O.; Hong, J.T.; Oh, K.-W. Rosmarinic Acid Potentiates Pentobarbital-Induced Sleep Behaviors and Non-Rapid Eye Movement (NREM) Sleep through the Activation of GABAA-ergic Systems. Biomol. Ther. 2017, 25, 105–111. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, C.-S.; Hu, Z.; Han, J.-Y.; Kim, S.K.; Yoo, S.-K.; Yeo, Y.M.; Chong, M.S.; Lee, K.; Hong, J.T.; et al. Enhancement of pentobarbital-induced sleep by apigenin through chloride ion channel activation. Arch. Pharm. Res. 2012, 35, 367–373. [Google Scholar] [CrossRef]
- Cao, Q.; Jiang, Y.; Cui, S.-Y.; Tu, P.-F.; Chen, Y.-M.; Ma, X.-L.; Cui, X.-Y.; Huang, Y.-L.; Ding, H.; Song, J.-Z.; et al. Tenuifolin, a saponin derived from Radix Polygalae, exhibits sleep-enhancing effects in mice. Phytomedicine 2016, 23, 1797–1805. [Google Scholar]
- Shen, C.-Y.; Ma, P.-Y.; Zhu, J.-J.; Jiang, J.-G.; Liu, L.; Yi, Y.-K.; Zhu, H.-X.; Liu, Q. Saponin extracts from Gynostemma pentaphyllum (Thunb.) Makino display sedative-hypnotic and anxiolytic effects. Ind. Crops Prod. 2020, 157, 112893. [Google Scholar] [CrossRef]
- Zhong, Y.; Zheng, Q.; Hu, P.; Huang, X.; Yang, M.; Ren, G.; Li, J.; Du, Q.; Liu, S.; Zhang, K.; et al. Sedative and hypnotic effects of Perilla frutescens essential oil through GABAergic system pathway. J. Ethnopharmacol. 2021, 279, 113627. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Guo, Q.; Li, H.; Wang, Z.; Li, J.; Li, T.; Tang, T.; Wang, Y.; Jia, Y.; et al. Valerian essential oil for treating insomnia via the serotonergic synapse pathway. Front. Nutr. 2022, 9, 927434. [Google Scholar] [CrossRef]
- Kim, H.; Park, I.; Park, K.; Park, S.; Kim, Y.; Park, B.-G. The Positive Effects of Poria cocos Extract on Quality of Sleep in Insomnia Rat Models. Int. J. Environ. Res. Public Health 2022, 19, 6629. [Google Scholar] [CrossRef]
- Oh, D.-R.; Kim, Y.; Jo, A.; Choi, E.J.; Oh, K.-N.; Kim, J.; Kang, H.; Kim, Y.R.; Choi, C.y. Sedative and hypnotic effects of Vaccinium bracteatum Thunb. through the regulation of serotonegic and GABAA-ergic systems: Involvement of 5-HT1A receptor agonistic activity. Biomed. Pharmacother. 2019, 109, 2218–2227. [Google Scholar] [CrossRef]
- Liu, W.-L.; Wu, B.-F.; Shang, J.-H.; Zhao, Y.-L.; Huang, A.-X. Moringa oleifera Lam Seed Oil Augments Pentobarbital-Induced Sleeping Behaviors in Mice via GABAergic Systems. J. Agric. Food Chem. 2020, 68, 3149–3162. [Google Scholar]
- Wang, Y.; Zheng, X.; Li, K.; Gao, J.; Huang, J.; Lou, Z. Jinhua Hecha—A fermented green tea improves sleep via regulating glutamatergic synapses and gut microbiota. J. Funct. Foods 2024, 123, 106550. [Google Scholar]
- Luo, H.; Sun, S.-j.; Wang, Y.; Wang, Y.-l. Revealing the sedative-hypnotic effect of the extracts of herb pair Semen Ziziphi spinosae and Radix Polygalae and related mechanisms through experiments and metabolomics approach. BMC Complement. Med. Ther. 2020, 20, 206. [Google Scholar]
- Park, C.W.; Hong, K.-B.; Suh, H.J.; Ahn, Y. Sleep-promoting activity of amylase-treated Ashwagandha (Withania somnifera L. Dunal) root extract via GABA receptors. J. Food Drug Anal. 2023, 31, 27–288. [Google Scholar]
- Ajibade, M.A.; Akhigbemen, A.M.; Okolie, N.P.; Ozolua, R.I. Methanol leaf extract of Paullinia pinnata exerts sleep-enhancing and anticonvulsant effects via a mechanism involving the GABAergic pathway. Epilepsy Res. 2022, 183, 106943. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, R.; Jia, Y.; Chen, Z.; Li, S.; Qi, B.; Ma, A. Foods for Sleep Improvement: A Review of the Potential and Mechanisms Involved. Foods 2025, 14, 1080. https://doi.org/10.3390/foods14071080
Fan R, Jia Y, Chen Z, Li S, Qi B, Ma A. Foods for Sleep Improvement: A Review of the Potential and Mechanisms Involved. Foods. 2025; 14(7):1080. https://doi.org/10.3390/foods14071080
Chicago/Turabian StyleFan, Rui, Yingmin Jia, Zhou Chen, Siting Li, Bing Qi, and Aijin Ma. 2025. "Foods for Sleep Improvement: A Review of the Potential and Mechanisms Involved" Foods 14, no. 7: 1080. https://doi.org/10.3390/foods14071080
APA StyleFan, R., Jia, Y., Chen, Z., Li, S., Qi, B., & Ma, A. (2025). Foods for Sleep Improvement: A Review of the Potential and Mechanisms Involved. Foods, 14(7), 1080. https://doi.org/10.3390/foods14071080