Eco-Friendly Bio-Packaging from Food Byproducts: Recent Advances and Developments

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Packaging and Preservation".

Deadline for manuscript submissions: closed (15 November 2024) | Viewed by 6866

Special Issue Editors


E-Mail Website
Guest Editor
Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
Interests: biodegradable films; functional foods; control delivery

Special Issue Information

Dear Colleagues,

Food wastes are generated during multiple stages of food production, from growing produce through to consumption. Significant volumes of agricultural and food processing wastes and/or by-products are produced annually on a global scale. Materials that cannot be composted or utilized for other purposes such as animal feed are commonly sent to landfill sites, where their decomposition can generate ozone-depleting methane gas. Researchers are investigating alternative uses for various food by-products in order to divert those that cannot be readily used and are presently destined for landfill. Various food by-products can be readily manipulated using physical and chemical processes to produce a range of new materials, including foams, trays, boards, and film. This Special Issue reports recent advances and developments related to the valorization of food by-products, with an emphasis on the production of bio-based packaging.

Dr. Marlene Cran
Dr. Srinivas Janaswamy
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food wastes
  • by-products
  • packaging
  • biodegradable
  • valorization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 10167 KiB  
Article
Development of Eco-Friendly Packaging Films from Soyhull Lignocellulose: Towards Valorizing Agro-Industrial Byproducts
by Sumi Regmi, Sandeep Paudel and Srinivas Janaswamy
Foods 2024, 13(24), 4000; https://doi.org/10.3390/foods13244000 - 11 Dec 2024
Cited by 4 | Viewed by 1918
Abstract
Due to their inability to biodegrade, petroleum-based plastics pose significant environmental challenges by disrupting aquatic, marine, and terrestrial ecosystems. Additionally, the widespread presence of microplastics and nanoplastics induces serious health risks for humans and animals. These pressing issues create an urgent need for [...] Read more.
Due to their inability to biodegrade, petroleum-based plastics pose significant environmental challenges by disrupting aquatic, marine, and terrestrial ecosystems. Additionally, the widespread presence of microplastics and nanoplastics induces serious health risks for humans and animals. These pressing issues create an urgent need for designing and developing eco-friendly, biodegradable, renewable, and non-toxic plastic alternatives. To this end, agro-industrial byproducts such as soyhulls, which contain 29–50% lignocellulosic residue, are handy. This study extracted lignocellulosic residue from soyhulls using alkali treatment, dissolved it in ZnCl2 solution, and crosslinked it with calcium ions and glycerol to create biodegradable films. The film formulation was optimized using the Box–Behnken design, with response to tensile strength (TS), elongation at break (EB), and water vapor permeability (WVP). The optimized films were further characterized for color, light transmittance, UV-blocking capacity, water absorption, contact angle, and biodegradability. The resulting optimized film demonstrated a tensile strength of 10.4 ± 1.0 MPa, an elongation at break of 9.4 ± 1.8%, and a WVP of 3.5 ± 0.4 × 10−11 g·m−1·s−1·Pa−1. Importantly, 90% of the film degrades within 37 days at 24% soil moisture. This outcome underscores the potential of soyhull-derived films as a sustainable, innovative alternative to plastic packaging, contributing to the circular economy and generating additional income for farmers and allied industries. Full article
Show Figures

Figure 1

25 pages, 16811 KiB  
Article
Sausage Preservation Using Films Composed of Chitosan and a Pickering Emulsion of Essential Oils Stabilized with Waste-Jujube-Kernel-Derived Cellulose Nanocrystals
by Haoyu Chen, Keqi Xin and Qunli Yu
Foods 2024, 13(21), 3487; https://doi.org/10.3390/foods13213487 - 30 Oct 2024
Viewed by 1430
Abstract
The purpose of this study was to prepare Pickering emulsions stabilized by waste jujube kernel cellulose nanocrystals (CNC) using composite essential oils (EOs) (i.e., cinnamon essential oil [CIN] combined with clove essential oil [CL]). The Pickering emulsions were blended with chitosan (CS) to [...] Read more.
The purpose of this study was to prepare Pickering emulsions stabilized by waste jujube kernel cellulose nanocrystals (CNC) using composite essential oils (EOs) (i.e., cinnamon essential oil [CIN] combined with clove essential oil [CL]). The Pickering emulsions were blended with chitosan (CS) to generate a composite film (CS/CNC/EOs Pickering emulsions). We evaluated the mechanical properties, barrier properties, and microstructures of CS/CNC/EOs bio-based packaging films containing different concentrations of EOs. In addition, the fresh-keeping effects of the composite membranes on beef sausages were evaluated over a 12-day storage period. Notably, the EOs exhibited good compatibility with CS. With the increase in the EOs concentration, the droplet size increased, the composite films became thicker, the elongation at break decreased, the tensile strength increased, and the water vapor permeability decreased. When the composite films were used for preserving beef sausages, the antioxidant and antibacterial activity of the membranes improved as the concentration of EOs increased, effectively prolonging the shelf life of the sausages. Composite membranes with an EOs concentration of 2% exerted the best fresh-keeping effects. Overall, owing to their antioxidant and antimicrobial properties, the bio-based composite films prepared using CS/CNC/EOs Pickering emulsions demonstrated immense potential for application in the packaging of meat products. Full article
Show Figures

Figure 1

20 pages, 797 KiB  
Article
Development of Edible Coatings Based on Pineapple Peel (Ananas Comosus L.) and Yam Starch (Dioscorea alata) for Application in Acerola (Malpighia emarginata DC)
by Maria Brígida Fonseca Galvão, Thayza Christina Montenegro Stamford, Flávia Alexsandra Belarmino Rolim de Melo, Gerlane Souza de Lima, Carlos Eduardo Vasconcelos de Oliveira, Ingrid Luana Nicácio de Oliveira, Rita de Cássia de Araújo Bidô, Maria Manuela Estevez Pintado, Maria Elieidy Gomes de Oliveira and Tania Lucia Montenegro Stamford
Foods 2024, 13(18), 2873; https://doi.org/10.3390/foods13182873 - 11 Sep 2024
Cited by 1 | Viewed by 1998
Abstract
Acerola fruit has great nutritional and economic relevance; however, its rapid degradation hinders commercialization. The use of coatings reduces post-harvest biochemical modifications and provides physical and biological protection for vegetables such as acerola. This study developed and characterized an edible coating made from [...] Read more.
Acerola fruit has great nutritional and economic relevance; however, its rapid degradation hinders commercialization. The use of coatings reduces post-harvest biochemical modifications and provides physical and biological protection for vegetables such as acerola. This study developed and characterized an edible coating made from pearl pineapple peel flour (PPPF) and yam starch (YS) to preserve the quality standards of acerola fruits during storage at room temperature and under refrigeration. The edible coating, composed of 4 g of PPPF, 3 g of starch, and 10% glycerol, presented excellent moisture content (11%), light tone (L* 83.68), and opacity (45%), resistance to traction of 27.77 Mpa, elastic modulus of 1.38 Mpa, and elongation percentage of 20%. The total phenolic content of the coating was 278.68 ± 0.45 mg GAE/g and the antioxidant activity by DPPH was 28.85 ± 0.27%. The quality parameters of acerolas were evaluated with three treatments: T1—uncoated fruits; T2—fruits coated with 1% glycerol; and T3—fruits coated with PPPF-YS. The T3 treatment reduced the weight loss of stored acerolas, maintaining the light and bright color of the fruits, and delayed the decrease in soluble solids, especially in refrigerated fruits. Therefore, edible coatings based on pineapple flour and yam starch are effective technologies for controlling the physical and physicochemical parameters of acerolas during storage, benefiting the post-harvest quality of this fruit. Full article
Show Figures

Figure 1

Back to TopTop