Yeast Biotechnology 5.0

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Microbial Metabolism, Physiology & Genetics".

Deadline for manuscript submissions: closed (31 December 2021) | Viewed by 65314

Special Issue Editor


E-Mail Website
Guest Editor
Structural Biology Brussels Lab, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Interests: yeast biotechnology; cell immobilization; beer brewing biochemistry and fermentation; mini- and microbioreactors; Saccharomyces cerevisiae; Candida; yeast space biology (bioreactors for microgravity research); yeast adhesins; yeast systems biology; glycobiology; nanobiotechnology; atomic force microscopy; protein crystallization; yeast protein structural biology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels and biopharmaceuticals. Saccharomyces cerevisiae (bakers’ yeast) is the yeast species that is surely the most exploited by man. Saccharomyces is a top choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes for antibiotics, biopharmaceuticals, technical enzymes, and ethanol and biofuels. Today, diverse yeast species are explored for industrial applications, such as, e.g., Saccharomyces species, Pichia pastoris and other Pichia species, Kluyveromyces marxianus, Hansenula polymorpha, Yarrowia lipolytica, Candida species, Phaffia rhodozyma, wild yeasts for beer brewing, etc.

This Special Issue is focused on recent developments of yeast biotechnology with topics including recent techniques for characterizing yeast and their physiology (including omics and nanobiotechnology techniques), methods to adapt industrial strains (including metabolic, synthetic and evolutionary engineering) and the use of yeasts as microbial cell factories to produce biopharmaceuticals, enzymes, alcohols, organic acids, flavours and fine chemicals, and advances in yeast fermentation technology and industrial fermentation processes.

Topics include but are not limited to:

Yeast characterization and analysis
Brewing yeasts (including wild yeasts), wine yeasts, baker’s yeasts.
Evolution and variation of genomes of industrial yeasts.
Yeast systems biology: genomics, proteomics, fluxomics, metabolomics, omics integration.
Yeast nanobiotechnology (nanoanalysis techniques, construction of nanostructures, etc.).

Yeast strain engineering
Yeast metabolic engineering: production of biofuels, secondary metabolites, commodity chemicals, proteins, biopharmaceuticals, material precursors.
Yeast synthetic biology: yeasts as cell factories, tools for controlling enzyme expression levels, strategies for regulating spatial localization of enzymes in yeast, regulatory networks, biomolecular logic gates.
Strain improvement via evolutionary engineering.

Fermentation technology
Industrial bioreactors.
Mini- and microbioreactors: single-cell analysis, high-throughput screening, microfluidic bioreactors.
Process intensification: high-density fermentations, high-gravity fermentation.
Fermentative stress adaptation.

Industrial fermentation processes
Production of food (bread, etc.) and beverages (beer, wine, cider, etc.).
Production of baker’s yeast.
Production of biofuels (bioethanol, 1-butanol, biodiesel, jetfuels), commodity chemicals, pharmaceuticals, material precursors, secondary metabolites.

Prof. Dr. Ronnie G. Willaert
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 4211 KiB  
Communication
The Dynamics of Single-Cell Nanomotion Behaviour of Saccharomyces cerevisiae in a Microfluidic Chip for Rapid Antifungal Susceptibility Testing
by Vjera Radonicic, Charlotte Yvanoff, Maria Ines Villalba, Sandor Kasas and Ronnie G. Willaert
Fermentation 2022, 8(5), 195; https://doi.org/10.3390/fermentation8050195 - 26 Apr 2022
Cited by 6 | Viewed by 3305
Abstract
The fast emergence of multi-resistant pathogenic yeasts is caused by the extensive—and sometimes unnecessary—use of broad-spectrum antimicrobial drugs. To rationalise the use of broad-spectrum antifungals, it is essential to have a rapid and sensitive system to identify the most appropriate drug. Here, we [...] Read more.
The fast emergence of multi-resistant pathogenic yeasts is caused by the extensive—and sometimes unnecessary—use of broad-spectrum antimicrobial drugs. To rationalise the use of broad-spectrum antifungals, it is essential to have a rapid and sensitive system to identify the most appropriate drug. Here, we developed a microfluidic chip to apply the recently developed optical nanomotion detection (ONMD) method as a rapid antifungal susceptibility test. The microfluidic chip contains no-flow yeast imaging chambers in which the growth medium can be replaced by an antifungal solution without disturbing the nanomotion of the cells in the imaging chamber. This allows for recording the cellular nanomotion of the same cells at regular time intervals of a few minutes before and throughout the treatment with an antifungal. Hence, the real-time response of individual cells to a killing compound can be quantified. In this way, this killing rate provides a new measure to rapidly assess the susceptibility of a specific antifungal. It also permits the determination of the ratio of antifungal resistant versus sensitive cells in a population. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Figure 1

19 pages, 1229 KiB  
Article
Saccharomyces cerevisiae Dehydrated Culture Modulates Fecal Microbiota and Improves Innate Immunity of Adult Dogs
by Karine de Melo Santos, Larissa Wünsche Risolia, Mariana Fragoso Rentas, Andressa Rodrigues Amaral, Roberta Bueno Ayres Rodrigues, Maria Isabel Gonzalez Urrego, Thiago Henrique Annibale Vendramini, Ricardo Vieira Ventura, Júlio César de Carvalho Balieiro, Cristina de Oliveira Massoco, João Paulo Fernandes Santos, Cristiana Fonseca Ferreira Pontieri and Marcio Antonio Brunetto
Fermentation 2022, 8(1), 2; https://doi.org/10.3390/fermentation8010002 - 23 Dec 2021
Cited by 6 | Viewed by 3534
Abstract
Saccharomyces cerevisiae yeast culture can be dehydrated, and it has a potential prebiotic effect. This study evaluated the effects of supplementing increasing levels of dehydrated yeast culture (DYC) of Saccharomyces cerevisiae (Original XPC™, Diamond V, Cedar Rapids, IA, USA) on fecal microbiota, nutrient [...] Read more.
Saccharomyces cerevisiae yeast culture can be dehydrated, and it has a potential prebiotic effect. This study evaluated the effects of supplementing increasing levels of dehydrated yeast culture (DYC) of Saccharomyces cerevisiae (Original XPC™, Diamond V, Cedar Rapids, IA, USA) on fecal microbiota, nutrient digestibility, and fermentative and immunological parameters of healthy adult dogs. Eighteen adult male and female dogs with a mean body weight of 15.8 ± 7.37 kg were randomly assigned to three experimental treatments: CD (control diet), DYC 0.3 (control diet with 0.3% DYC) and DYC 0.6 (control diet with 0.6% DYC). After 21 days of acclimation, fecal samples were collected for analysis of nutrient digestibility, microbiota and fecal fermentation products. On the last day, the blood samples were collected for the analysis of immunological parameters. The microbiome profile was assessed by the Illumina sequencing method, which allowed identifying the population of each bacterial phylum and genus. The statistical analyses were performed using the SAS software and the Tukey test for multiple comparison (p < 0.05). Our results suggest that the addition of DYC increased the percentage of the phyla Actinobacteria and Firmicutes (p = 0.0048 and p < 0.0001, respectively) and reduced that of the phylum Fusobacteria (p = 0.0008). Regardless of the inclusion level, the yeast addition promoted reduction of the genera Allobaculum and Fusobacterium (p = 0.0265 and p = 0.0006, respectively) and increased (p = 0.0059) that of the genus Clostridium. At the highest prebiotic inclusion level (DYC 0.6), an increase (p = 0.0052) in the genus Collinsella and decrease (p = 0.0003) in Prevotella were observed. Besides that, the inclusion of the additive improved the apparent digestibility of the crude fiber and decreased the digestibility of crude protein, nitrogen-free extract and metabolizable energy (p < 0.05). There were no significant changes in the production of volatile organic compounds. However, an increase in propionate production was observed (p = 0.05). In addition, the inclusion of yeast resulted in an increased phagocytosis index in both treatments (p = 0.01). The addition of 0.3 and 0.6% DYC to the diet of dogs wase able to modulate the proportions of some phyla and genera in healthy dogs, in addition to yielding changes in nutrient digestibility, fermentative products and immunity in healthy adult dogs, indicating that this additive can modulate fecal microbiota and be included in dog nutrition. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Figure 1

11 pages, 909 KiB  
Article
The Influence of Yeast Strain on Whisky New Make Spirit Aroma
by Christopher Waymark and Annie E. Hill
Fermentation 2021, 7(4), 311; https://doi.org/10.3390/fermentation7040311 - 14 Dec 2021
Cited by 10 | Viewed by 7378
Abstract
Flavour in Scotch malt whisky is a key differentiating factor for consumers and producers alike. Yeast (commonly Saccharomyces cerevisiae) metabolites produce a significant amount of this flavour as part of distillery fermentations, as well as ethanol and carbon dioxide. Whilst yeast strains contribute [...] Read more.
Flavour in Scotch malt whisky is a key differentiating factor for consumers and producers alike. Yeast (commonly Saccharomyces cerevisiae) metabolites produce a significant amount of this flavour as part of distillery fermentations, as well as ethanol and carbon dioxide. Whilst yeast strains contribute flavour, there is limited information on the relationship between yeast strain and observed flavour profile. In this work, the impact of yeast strain on the aroma profile of new make spirit (freshly distilled, unmatured spirit) was investigated using 24 commercially available active dried yeast strains. The contribution of alcoholic, fruity, sulfury and sweet notes to new make spirit by yeast was confirmed. Generally, distilling strains could be distinguished from brewing and wine strains based on aroma and ester concentrations. However, no statistically significant differences between individual yeast strains could be perceived in the intensity of seven aroma categories typically associated with whisky. Overall, from the yeast strains assessed, it was found that new make spirit produced using yeast strains marketed as ‘brewing’ strains was preferred in terms of acceptability rating. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Figure 1

15 pages, 3415 KiB  
Article
Methods for Oxygenation of Continuous Cultures of Brewer’s Yeast, Saccharomyces cerevisiae
by Timothy Granata, Cindy Follonier, Chiara Burkhardt and Bernd Rattenbacher
Fermentation 2021, 7(4), 282; https://doi.org/10.3390/fermentation7040282 - 26 Nov 2021
Cited by 4 | Viewed by 4042
Abstract
Maintaining steady-state, aerobic cultures of yeast in a bioreactor depends on the configuration of the bioreactor system as well as the growth medium used. In this paper, we compare several conventional aeration methods with newer filter methods using a novel optical sensor array [...] Read more.
Maintaining steady-state, aerobic cultures of yeast in a bioreactor depends on the configuration of the bioreactor system as well as the growth medium used. In this paper, we compare several conventional aeration methods with newer filter methods using a novel optical sensor array to monitor dissolved oxygen, pH, and biomass. With conventional methods, only a continuously stirred tank reactor configuration gave high aeration rates for cultures in yeast extract peptone dextrose (YPD) medium. For filters technologies, only a polydimethylsiloxan filter provided sufficient aeration of yeast cultures. Further, using the polydimethylsiloxan filter, the YPD medium gave inferior oxygenation rates of yeast compared to superior results with Synthetic Complete medium. It was found that the YPD medium itself, not the yeast cells, interfered with the filter giving the low oxygen transfer rates based on the volumetric transfer coefficient (KLa). The results are discussed for implications of miniaturized bioreactors in low-gravity environments. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Graphical abstract

14 pages, 2393 KiB  
Article
Influence of Environmental Microbiota on the Activity and Metabolism of Starter Cultures Used in Coffee Beans Fermentation
by Vanessa Bassi Pregolini, Gilberto Vinícius de Melo Pereira, Alexander da Silva Vale, Dão Pedro de Carvalho Neto and Carlos Ricardo Soccol
Fermentation 2021, 7(4), 278; https://doi.org/10.3390/fermentation7040278 - 25 Nov 2021
Cited by 18 | Viewed by 4379
Abstract
Microbial activity is an integral part of agricultural ecosystems and can influence the quality of food commodities. During on-farm processing, coffee growers use a traditional method of fermentation to remove the cherry pulp surrounding the beans. Here, we investigated the influence of the [...] Read more.
Microbial activity is an integral part of agricultural ecosystems and can influence the quality of food commodities. During on-farm processing, coffee growers use a traditional method of fermentation to remove the cherry pulp surrounding the beans. Here, we investigated the influence of the coffee farm microbiome and the resulting fermentation process conducted with selected starter cultures (Pichia fermentans YC5.2 and Pediococcus acidilactici LPBC161). The microbiota of the coffee farm (coffee fruits and leaves, over-ripe fruits, cherries before de-pulping, depulped beans, and water used for de-pulping beans) was dominated by Enterobacteriaceae and Saccharomycetales, as determined by llumina-based amplicon sequencing. In addition, 299 prokaryotes and 189 eukaryotes were identified. Following the fermentation process, Pichia and the family Lactobacillaceae (which includes P. acidilactici) represented more than 70% of the total microbial community. The positive interaction between the starters resulted in the formation of primary metabolites (such as ethanol and lactic acid) and important aroma-impacting compounds (ethyl acetate, isoamyl acetate, and ethyl isobutyrate). The success competitiveness of the starters towards the wild microbiota indicated that coffee farm microbiota has little influence on starter culture-added coffee fermentation. However, hygiene requirements in the fermentation process should be indicated to prevent the high microbial loads present in coffee farm soil, leaves, fruits collected on the ground, and over-ripe fruits from having access to the fermentation tank and transferring undesirable aromas to coffee beans. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Graphical abstract

13 pages, 274 KiB  
Article
Manipulation of In Vitro Ruminal Fermentation and Feed Digestibility as Influenced by Yeast Waste-Treated Cassava Pulp Substitute Soybean Meal and Different Roughage to Concentrate Ratio
by Gamonmas Dagaew, Anusorn Cherdthong, Sawitree Wongtangtintharn, Metha Wanapat and Chanon Suntara
Fermentation 2021, 7(3), 196; https://doi.org/10.3390/fermentation7030196 - 17 Sep 2021
Cited by 10 | Viewed by 3252
Abstract
Cassava pulp (CS) is high in fiber and low in protein; hence, improving the nutritive value of CS is required to increase its contribution to enhancing ruminant production. The present work hypothesized that CS quality could be enhanced by fermentation with yeast waste [...] Read more.
Cassava pulp (CS) is high in fiber and low in protein; hence, improving the nutritive value of CS is required to increase its contribution to enhancing ruminant production. The present work hypothesized that CS quality could be enhanced by fermentation with yeast waste (YW), which can be used to replace soybean meal (SBM), as well as lead to improved feed utilization in ruminants. Thus, evaluation of in vitro ruminal fermentation and feed digestibility, as influenced by YW-treated CS and different roughage (R) to concentrate (C) ratios, was elucidated. The design of the experiment was a 5 × 3 factorial arrangement in a completely randomized design. Each treatment contained three replications and three runs. The first factor was replacing SBM with CS fermented with YW (CSYW) in a concentrate ratio at 100:0, 75:25, 50:50, 25:75, and 0:100, respectively. The second factor was R:C ratios at 70:30, 50:50, and 30:70. The level of CSYW showed significantly higher (p < 0.01) gas production from the insoluble fraction (b), potential extent of gas production (a + b), and cumulative gas production at 96 h than the control group (p < 0.05). There were no interactions among the CSYW and R:C ratio on the in vitro digestibility (p > 0.05). Furthermore, increasing the amount of CSYW to replace SBM up to 75% had no negative effect on in vitro neutral detergent fiber degradability (IVNDFD) (p > 0.05) while replacing CSWY at 100% could reduce IVNDFD (p > 0.05). The bacterial population in the rumen was reduced by 25.05% when CSYW completely replaced SBM (p < 0.05); however, 75% of CSWY in the diet did not change the bacterial population (p > 0.05). The concentration of propionate (C3) decreased upon an increase in the CSYW level, which was lowest with the replacement of SBM by CSYW up to 75%. However, various R:C ratios did not influence total volatile fatty acids (VFAs), and the proportion of VFAs (p > 0.05), except the concentration of C3, increased when the proportion of a concentrate diet increased (p < 0.05). In conclusion, CSYW could be utilized as a partial replacement for SBM in concentrate diets up to 75% without affecting gas kinetics, ruminal parameters, or in vitro digestibility. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
17 pages, 4096 KiB  
Article
Mechanisms of Metabolic Adaptation in Wine Yeasts: Role of Gln3 Transcription Factor
by Aroa Ferrer-Pinós, Víctor Garrigós, Emilia Matallana and Agustín Aranda
Fermentation 2021, 7(3), 181; https://doi.org/10.3390/fermentation7030181 - 5 Sep 2021
Viewed by 3007
Abstract
Wine strains of Saccharomyces cerevisiae have to adapt their metabolism to the changing conditions during their biotechnological use, from the aerobic growth in sucrose-rich molasses for biomass propagation to the anaerobic fermentation of monosaccharides of grape juice during winemaking. Yeast have molecular [...] Read more.
Wine strains of Saccharomyces cerevisiae have to adapt their metabolism to the changing conditions during their biotechnological use, from the aerobic growth in sucrose-rich molasses for biomass propagation to the anaerobic fermentation of monosaccharides of grape juice during winemaking. Yeast have molecular mechanisms that favor the use of preferred carbon and nitrogen sources to achieve such adaptation. By using specific inhibitors, it was determined that commercial strains offer a wide variety of glucose repression profiles. Transcription factor Gln3 has been involved in glucose and nitrogen repression. Deletion of GLN3 in two commercial wine strains produced different mutant phenotypes and only one of them displayed higher glucose repression and was unable to grow using a respiratory carbon source. Therefore, the role of this transcription factor contributes to the variety of phenotypic behaviors seen in wine strains. This variability is also reflected in the impact of GLN3 deletion in fermentation, although the mutants are always more tolerant to inhibition of the nutrient signaling complex TORC1 by rapamycin, both in laboratory medium and in grape juice fermentation. Therefore, most aspects of nitrogen catabolite repression controlled by TORC1 are conserved in winemaking conditions. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Figure 1

14 pages, 2665 KiB  
Article
Survey of Inoculated Commercial Saccharomyces cerevisiae in Winery-Based Trials
by Filomena L. Duarte and M. Margarida Baleiras-Couto
Fermentation 2021, 7(3), 176; https://doi.org/10.3390/fermentation7030176 - 3 Sep 2021
Cited by 3 | Viewed by 2200
Abstract
Wine production has developed from spontaneous to controlled fermentations using commercial active dry yeasts (ADY). In this study, S. cerevisiae commercial ADY were tested, and yeast community dynamics were monitored at different fermentation stages in three winery-based trials with volumes ranging from 60 [...] Read more.
Wine production has developed from spontaneous to controlled fermentations using commercial active dry yeasts (ADY). In this study, S. cerevisiae commercial ADY were tested, and yeast community dynamics were monitored at different fermentation stages in three winery-based trials with volumes ranging from 60 L to 250 hL. The differentiation of S. cerevisiae strains was achieved using microsatellite markers. In Experiment 1, results showed that both ADY strains revealed similar profiles, despite being described by the producer as having different properties. In Experiment 2, higher genetic diversity was detected when co-inoculation was tested, while in sequential inoculation, the initial ADY seemed to dominate throughout all fermentation. Pilot-scale red wine fermentations were performed in Experiment 3, where one single ADY strain was tested along with different oenological additives. Surprisingly, these trials showed an increase in distinct profiles towards the end of fermentation, indicating that the dominance of the ADY was lower than in the blank modality. The use of ADY is envisaged to promote a controlled and efficient alcoholic fermentation, and their purchase represents an important cost for wineries. Therefore, it is most relevant to survey commercial ADY during wine fermentation to understand if their use is effective. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Figure 1

8 pages, 250 KiB  
Article
Addition of Active Dry Yeast Could Enhance Feed Intake and Rumen Bacterial Population While Reducing Protozoa and Methanogen Population in Beef Cattle
by Kampanat Phesatcha, Krittika Chunwijitra, Burarat Phesatcha, Metha Wanapat and Anusorn Cherdthong
Fermentation 2021, 7(3), 172; https://doi.org/10.3390/fermentation7030172 - 30 Aug 2021
Cited by 9 | Viewed by 3254
Abstract
Urea–lime-treated rice straw fed to Thai native beef cattle was supplemented with dry yeast (DY) (Saccharomyces cerevisiae) to assess total feed intake, nutrient digestibility, rumen microorganisms, and methane (CH4) production. Sixteen Thai native beef cattle at 115 ± 10 [...] Read more.
Urea–lime-treated rice straw fed to Thai native beef cattle was supplemented with dry yeast (DY) (Saccharomyces cerevisiae) to assess total feed intake, nutrient digestibility, rumen microorganisms, and methane (CH4) production. Sixteen Thai native beef cattle at 115 ± 10 kg live weight were divided into four groups that received DY supplementation at 0, 1, 2, and 3 g/hd/d using a randomized completely block design. All animals were fed concentrate mixture at 0.5% of body weight, with urea–lime-treated rice straw fed ad libitum. Supplementation with DY enhanced total feed intake and digestibility of neutral detergent fiber and acid detergent fiber (p < 0.05), but dry matter, organic matter and crude protein were similar among treatments (p > 0.05). Total volatile fatty acid (VFA) and propionic acid (C3) increased (p < 0.05) with 3 g/hd/d DY supplementation, while acetic acid (C2) and butyric acid (C4) decreased. Protozoal population and CH4 production in the rumen decreased as DY increased (p < 0.05). Populations of F. succinogenes and R. flavefaciens increased (p < 0.05), whereas methanogen population decreased with DY addition at 3 g/hd/d, while R. albus was stable (p > 0.05) throughout the treatments. Thus, addition of DY to cattle feed increased feed intake, rumen fermentation, and cellulolytic bacterial populations. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
17 pages, 1259 KiB  
Article
Different Gene Expression Patterns of Hexose Transporter Genes Modulate Fermentation Performance of Four Saccharomyces cerevisiae Strains
by Chiara Nadai, Giulia Crosato, Alessio Giacomini and Viviana Corich
Fermentation 2021, 7(3), 164; https://doi.org/10.3390/fermentation7030164 - 23 Aug 2021
Cited by 8 | Viewed by 2949
Abstract
In Saccharomyces cerevisiae, the fermentation rate and the ability to complete the sugar transformation process depend on the glucose and fructose transporter set-up. Hexose transport mainly occurs via facilitated diffusion carriers and these are encoded by the HXT gene family and GAL2 [...] Read more.
In Saccharomyces cerevisiae, the fermentation rate and the ability to complete the sugar transformation process depend on the glucose and fructose transporter set-up. Hexose transport mainly occurs via facilitated diffusion carriers and these are encoded by the HXT gene family and GAL2. In addition, FSY1, coding a fructose/H+ symporter, was identified in some wine strains. This little-known transporter could be relevant in the last part of the fermentation process when fructose is the most abundant sugar. In this work, we investigated the gene expression of the hexose transporters during late fermentation phase, by means of qPCR. Four S. cerevisiae strains (P301.9, R31.3, R008, isolated from vineyard, and the commercial EC1118) were considered and the transporter gene expression levels were determined to evaluate how the strain gene expression pattern modulated the late fermentation process. The very low global gene expression and the poor fermentation performance of R008 suggested that the overall expression level is a determinant to obtain the total sugar consumption. Each strain showed a specific gene expression profile that was strongly variable. This led to rethinking the importance of the HXT3 gene that was previously considered to play a major role in sugar transport. In vineyard strains, other transporter genes, such as HXT6/7, HXT8, and FSY1, showed higher expression levels, and the resulting gene expression patterns properly supported the late fermentation process. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Figure 1

12 pages, 3108 KiB  
Article
Physico-Chemical Characteristics and Amino Acid Content Evaluation of Citric Acid by-Product Produced by Microbial Fermentation as a Potential Use in Animal Feed
by Mutyarsih Oryza.S, Sawitree Wongtangtintharn, Bundit Tengjaroenkul, Anusorn Cherdthong, Sirisak Tanpong, Pasakorn Bunchalee, Padsakorn Pootthachaya, Alissara Reungsang and Sineenart Polyorach
Fermentation 2021, 7(3), 149; https://doi.org/10.3390/fermentation7030149 - 11 Aug 2021
Cited by 6 | Viewed by 2535
Abstract
The production of citric acid produces 70% waste product or by-product. This by-product is produced by microbial fermentation which could be used as an alternative raw material for animal feed because it still contains citric acid, which could help to reduce pathogenic bacteria. [...] Read more.
The production of citric acid produces 70% waste product or by-product. This by-product is produced by microbial fermentation which could be used as an alternative raw material for animal feed because it still contains citric acid, which could help to reduce pathogenic bacteria. The objective of this study is to evaluate the physical and chemical value of citric acid by-product from rice (CABR) to compare the properties with those of rice bran and broken rice and to determine its potential as an alternative energy source in animal feed. The chemical composition of CABR was calculated using proximate analysis. The color of CABR was darker, and the bulk density value was 549.65 (g/L) (p < 0.05). With free flow, the angle of repose was 40°, and the particle size had less polygonal starch granules. CABR had a low pH of 4.77 and contained 19.80% crude protein, 11.97% crude fiber, and 4005.72 kcal/kg of energy. CABR had a higher crude protein value than broken rice and rice bran and a higher gross energy value than broken rice but less than rice bran. It also had a higher crude fiber value (p > 0.05). The results suggest that CABR could be utilized as an energy and protein source for animal feed formulations. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Figure 1

12 pages, 496 KiB  
Article
Isocitric Acid Production from Ethanol Industry Waste by Yarrowia lipolytica
by Svetlana V. Kamzolova, Vladimir A. Samoilenko, Julia N. Lunina and Igor G. Morgunov
Fermentation 2021, 7(3), 146; https://doi.org/10.3390/fermentation7030146 - 4 Aug 2021
Cited by 9 | Viewed by 2844
Abstract
There is ever increasing evidence that isocitric acid can be used as a promising compound with powerful antioxidant activity to combat oxidative stress. This work demonstrates the possibility of using waste product from the alcohol industry (so-called ester-aldehyde fraction) for production of isocitric [...] Read more.
There is ever increasing evidence that isocitric acid can be used as a promising compound with powerful antioxidant activity to combat oxidative stress. This work demonstrates the possibility of using waste product from the alcohol industry (so-called ester-aldehyde fraction) for production of isocitric acid by yeasts. The potential producer of isocitric acid from this fraction, Yarrowia lipolytica VKM Y-2373, was selected by screening of various yeast cultures. The selected strain showed sufficient growth and good acid formation in media with growth-limiting concentrations of nitrogen, sulfur, phosphorus, and magnesium. A shortage of Fe2+ and Ca2+ ions suppressed both Y. lipolytica growth and formation of isocitric acid. The preferential synthesis of isocitric acid can be regulated by changing the nature and concentration of nitrogen source, pH of cultivation medium, and concentration of ester-aldehyde fraction. Experiments in this direction allowed us to obtain 65 g/L isocitric acid with a product yield (YICA) of 0.65 g/g in four days of cultivation. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Figure 1

14 pages, 283 KiB  
Article
Utilization of Yeast Waste Fermented Citric Waste as a Protein Source to Replace Soybean Meal and Various Roughage to Concentrate Ratios on In Vitro Rumen Fermentation, Gas Kinetic, and Feed Digestion
by Chaichana Suriyapha, Anusorn Cherdthong, Chanon Suntara and Sineenart Polyorach
Fermentation 2021, 7(3), 120; https://doi.org/10.3390/fermentation7030120 - 17 Jul 2021
Cited by 17 | Viewed by 4533
Abstract
The objective of this study was to determine the application of citric waste fermented yeast waste (CWYW) obtained from an agro-industrial by-product as a protein source to replace soybean meal (SBM) in a concentrate diet. We also determined the effect of various roughage [...] Read more.
The objective of this study was to determine the application of citric waste fermented yeast waste (CWYW) obtained from an agro-industrial by-product as a protein source to replace soybean meal (SBM) in a concentrate diet. We also determined the effect of various roughage to concentrate ratios (R:C) on the gas production kinetics, ruminal characteristics, and in vitro digestibility using an in vitro gas production technique. The experiment design was a 3 × 5 factorial design arranged in a completely randomized design (CRD), with three replicates. There were three R:C ratios (60:40, 50:50, and 40:60) and five replacing SBM with CWYW (SBM:CWYW) ratios (100:0, 75:25, 50:50, 25:75, and 0:100). The CWYW product’s crude protein (CP) content was 535 g/kg dry matter (DM). There was no interaction effect between R:C ratios and SBM:CWYW ratios for all parameters observed (p > 0.05). The SBM:CWYW ratio did not affect the kinetics and the cumulative amount of gas. However, the gas potential extent and cumulative production of gas were increased with the R:C ratio of 40:60, and the values were about 74.9 and 75.0 mL/0.5 g, respectively (p < 0.01). The replacement of SBM by CWYW at up to 75% did not alter in vitro dry matter digestibility (IVDMD), but 100% CWYW replacement significantly reduced (p < 0.05) IVDMD at 24 h of incubation and the mean value. In addition, IVDMD at 12 h and 24 h of incubation and the mean value were significantly increased with the R:C ratio of 40:60 (p < 0.01). The SBM:CWYW ratio did not change the ruminal pH and population of protozoa (p > 0.05). The ruminal pH was reduced at the R:C ratio of 40:60 (p < 0.01), whereas the protozoal population at 4 h was increased (p < 0.05). The SBM:CWYW ratio did not impact the in vitro volatile fatty acid (VFA) profile (p > 0.05). However, the total VFA, and propionate (C3) concentration were significantly increased (p < 0.01) by the R:C ratio of 40:60. In conclusion, the replacement of SBM by 75% CWYW did not show any negative impact on parameters observed, and the R:C ratio of 40:60 enhanced the gas kinetics, digestibility, VFA, and C3 concentration. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)

Review

Jump to: Research

12 pages, 1165 KiB  
Review
Yeast Hybrids in Brewing
by Matthew J. Winans
Fermentation 2022, 8(2), 87; https://doi.org/10.3390/fermentation8020087 - 18 Feb 2022
Cited by 1 | Viewed by 4350
Abstract
Microbiology has long been a keystone in fermentation, and innovative yeast molecular biotechnology continues to represent a fruitful frontier in brewing science. Consequently, modern understanding of brewer’s yeast has undergone significant refinement over the last few decades. This publication presents a condensed summation [...] Read more.
Microbiology has long been a keystone in fermentation, and innovative yeast molecular biotechnology continues to represent a fruitful frontier in brewing science. Consequently, modern understanding of brewer’s yeast has undergone significant refinement over the last few decades. This publication presents a condensed summation of Saccharomyces species dynamics with an emphasis on the relationship between; traditional Saccharomyces cerevisiae ale yeast, S. pastorianus interspecific hybrids used in lager production, and novel hybrid yeast progress. Moreover, introgression from other Saccharomyces species is briefly addressed. The unique history of Saccharomyces cerevisiae and Saccharomyces hybrids is exemplified by recent genomic sequencing studies aimed at categorizing brewing strains through phylogeny and redefining Saccharomyces species boundaries. Phylogenetic investigations highlight the genomic diversity of Saccharomyces cerevisiae ale strains long known to brewers for their fermentation characteristics and phenotypes. The discovery of genomic contributions from interspecific Saccharomyces species into the genome of S. cerevisiae strains is ever more apparent with increasing research investigating the hybrid nature of modern industrial and historical fermentation yeast. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Figure 1

21 pages, 1960 KiB  
Review
Converting Sugars into Cannabinoids—The State-of-the-Art of Heterologous Production in Microorganisms
by Gabriel Rodrigues Favero, Gilberto Vinícius de Melo Pereira, Júlio Cesar de Carvalho, Dão Pedro de Carvalho Neto and Carlos Ricardo Soccol
Fermentation 2022, 8(2), 84; https://doi.org/10.3390/fermentation8020084 - 17 Feb 2022
Cited by 8 | Viewed by 11081
Abstract
The legal cannabis market worldwide is facing new challenges regarding innovation in the production of cannabinoid-based drugs. The usual cannabinoid production involves growing Cannabis sativa L. outdoor or in dedicated indoor growing facilities, followed by isolation and purification steps. This process is limited [...] Read more.
The legal cannabis market worldwide is facing new challenges regarding innovation in the production of cannabinoid-based drugs. The usual cannabinoid production involves growing Cannabis sativa L. outdoor or in dedicated indoor growing facilities, followed by isolation and purification steps. This process is limited by the growth cycles of the plant, where the cannabinoid content can deeply vary from each harvest. A game change approach that does not involve growing a single plant has gained the attention of the industry: cannabinoids fermentation. From recombinant yeasts and bacteria, researchers are able to reproduce the biosynthetic pathway to generate cannabinoids, such as (-)-Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and (-)-Δ9-tetrahydrocannabivarin (Δ9-THCV). This approach avoids pesticides, and natural resources such as water, land, and energy are reduced. Compared to growing cannabis, fermentation is a much faster process, although its limitation regarding the phytochemical broad range of molecules naturally present in cannabis. So far, there is not a consolidated process for this brand-new approach, being an emerging and promising concept for countries in which cultivation of Cannabis sativa L. is illegal. This survey discusses the techniques and microorganisms already established to accomplish the task and those yet in seeing for the future, exploring upsides and limitations about metabolic pathways, toxicity, and downstream recovery of cannabinoids throughout heterologous production. Therapeutic potential applications of cannabinoids and in silico methodology toward optimization of metabolic pathways are also explored. Moreover, conceptual downstream analysis is proposed to illustrate the recovery and purification of cannabinoids through the fermentation process, and a patent landscape is presented to provide the state-of-the-art of the transfer of knowledge from the scientific sphere to the industrial application. Full article
(This article belongs to the Special Issue Yeast Biotechnology 5.0)
Show Figures

Graphical abstract

Back to TopTop