Addition of Active Dry Yeast Could Enhance Feed Intake and Rumen Bacterial Population While Reducing Protozoa and Methanogen Population in Beef Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Feed, and Experimental Design
2.2. Samples Collection and Chemical Analyses of Samples
2.3. Statistical Methods
3. Results
3.1. Feed Intake and Digestibility
3.2. Rumen Fermentation, and Blood Urea Nitrogen
3.3. Volatile Fatty Acid (VFA) Profiles and Methane (CH4) Production
3.4. Microbial Population
4. Discussion
4.1. Feed Intake and Nutrient Digestibility
4.2. Rumen Ecology and Blood Urea-Nitrogen
4.3. Ruminal Volatile Fatty Acid (VFA) Profiles and Methane (CH4) Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elghandour, M.M.Y.; Khusro, A.; Adegbeye, M.J.; Tan, Z.; Abu Hafsa, S.H.; Greiner, R.; Ugbogu, E.A.; Anele, U.Y.; Salem, A.Z.M. Dynamic role of single-celled fungi in ruminal microbial ecology and activities. J. Appl. Microbiol. 2020, 128, 950–965. [Google Scholar] [CrossRef] [Green Version]
- Faccio-Demarco, C.; Mumbach, T.; Oliveira-de-Freitas, V.; Fraga e Silva-Raimondo, R.; Medeiros-Gonçalves, F.; Nunes-Corrêa, M.; Burkert-Del Pino, F.A.; Mendonça-Nunes-Ribeiro Filho, H.; Cassal-Brauner, C. Effect of yeast products supplementation during transition period on metabolic profile and milk production in dairy cows. Trop. Anim. Health Prod. 2019, 51, 2193–2201. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Ameilbonne, A.; Bichat, A.; Mosoni, P.; Ossa, F.; Forano, E. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. J. Appl. Microbiol. 2016, 120, 560–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desnoyers, M.; Giger-Reverdin, S.; Bertin, G.; Duvaux-Ponter, C.; Sauvant, D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef]
- Cagle, C.M.; Fonseca, M.A.; Callaway, T.R.; Runyan, C.A.; Cravey, M.D.; Tedeschi, L.O. Evaluation of the effects of live yeast on rumen parameters and in situ digestibility of dry matter and neutral detergent fiber in beef cattle fed growing and finishing diets. Appl. Anim. Sci. 2020, 36, 36–47. [Google Scholar] [CrossRef]
- Crossland, W.L.; Cagle, C.M.; Sawyer, J.E.; Callaway, T.R.; Tedeschi, L.O. Evaluation of active dried yeast in the diets of feedlot steers. II. Effects on rumen pH and liver health of feedlot steers. J. Anim. Sci. 2019, 97, 1347–1363. [Google Scholar] [CrossRef]
- Sousa, D.O.; Oliveira, C.A.; Velasquez, A.V.; Souza, J.M.; Chevaux, E.; Mari, L.J.; Silva, L.F.P. Live yeast supplementation improves rumen fibre degradation in cattle grazing tropical pastures throughout the year. Anim. Feed Sci. Technol. 2018, 236, 149–158. [Google Scholar] [CrossRef]
- Opsi, F.; Fortina, R.; Tassone, S.; Bodas, R.; López, S. Effects of inactivated and live cells of Saccharomyces cerevisiae on in vitro ruminal fermentation of diets with different forage:concentrate ratio. J. Agric. Sci. 2012, 150, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Pinloche, E.; McEwan, N.; Marden, J.P.; Bayourthe, C.; Auclair, E.; Newbold, C.J. The Effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE 2013, 8, e67824. [Google Scholar] [CrossRef] [Green Version]
- Sartori, E.D.; Canozzi, M.E.A.; Zago, D.; Prates, Ê.R.; Velho, J.P.; Barcellos, J.O.J. The Effect of live yeast supplementation on beef cattle performance: A systematic review and meta-analysis. J. Agric. Sci. 2017, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Roughage to concentrate ratio and Saccharomyces cerevisiae inclusion could modulate feed digestion and in vitro ruminal fermentation. Vet. Sci. 2020, 7, 151. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.Y.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Anim. Res. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Galyean, M. Laboratory Procedure in Animal Nutrition Research; Department of Animal and Range Sciences, New Mexico State University: Las Cruces, NM, USA, 1989; Volume 188. [Google Scholar]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef]
- Koike, S.; Kobayashi, Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 2001, 204, 361–366. [Google Scholar] [CrossRef]
- Tajima, K.; Aminov, R.I.; Nagamine, T.; Matsui, H.; Nakamura, M.; Benno, Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 2001, 67, 2766–2774. [Google Scholar] [CrossRef] [Green Version]
- Denman, S.E.; Tomkins, N.W.; McSweeney, C.S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 2007, 62, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol. 1967, 33, 361–365. [Google Scholar]
- SAS (Statistical Analysis System). User’s Guide: Statistic, 9.3th ed.; SAS Inst. Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Guedes, C.M.; Gonçalves, D.; Rodrigues, M.A.M.; Dias-da-Silva, A. Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Anim. Feed Sci. Technol. 2008, 145, 27–40. [Google Scholar] [CrossRef]
- Mir, Z.; Mir, P.S. Effect of the addition of live yeast (Saccharomyces cerevisiae) on growth and carcass quality of steers fed high-forage or high-grain diets and on feed digestibility and in situ degradability. J. Anim. Sci. 1994, 72, 537–545. [Google Scholar] [CrossRef] [Green Version]
- dos Santos Monnerat, J.P.; Paulino, P.V.R.; Detmann, E.; Valadares Filho, S.C.; Valadares, R.D.F.; Duarte, M.S. Effects of Saccharomyces cerevisiae and monensin on digestion, ruminal parameters, and balance of nitrogenous compounds of beef cattle fed diets with different starch concentrations. Trop. Anim. Health Prod. 2013, 45, 1251–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemi, E.; Khorvash, M.; Nikkhah, A. Effect of forage sources and Saccharomyces cerevisiae (Sc47) on ruminal fermentation parameters. S. Afr. J. Anim. Sci. 2012, 42, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Wanapat, M.; Pimpa, O. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Australas. J. Anim. Sci. 1999, 12, 904–907. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y.; Niu, J.; Guo, Y.; Pauline, M.; Zhao, X.; Li, Q.; Cao, Y.; Bi, C.; Zhang, X.; et al. Effect of active dry yeast on lactation performance, methane production, and ruminal fermentation patterns in early-lactating Holstein cows. J. Dairy Sci. 2021, 104, 381–390. [Google Scholar] [CrossRef]
- Jiang, Y.; Ogunade, I.M.; Qi, S.; Hackmann, T.J.; Staples, C.R.; Adesogan, A.T. Effects of the dose and viability of Saccharomyces cerevisiae. 1. Diversity of ruminal microbes as analyzed by Illumina MiSeq sequencing and quantitative PCR. J. Dairy Sci. 2017, 100, 325–342. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.X.; Alugongo, G.M.; Chung, R.; Dong, S.Z.; Li, S.L.; Yoon, I.; Wu, Z.H.; Cao, Z.J. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community. J. Dairy Sci. 2016, 99, 5401–5412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAllister, T.A.; Beauchemin, K.A.; Alazzeh, A.Y.; Baah, J.; Teather, R.M.; Stanford, K. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 2011, 91, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Dawson, K.A.; Hopkins, D.M. Differential effects of live yeast on the cellulolytic activities of anaerobic ruminal bacteria. J. Anim. Sci. 1991, 69 (Suppl. 1), 531. [Google Scholar]
- Patra, A.K. The use of live yeast products as microbial feed additives in ruminant nutrition. Asian. J. Anim. Vet. Adv. 2012, 7, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; He, Z.; Beauchemin, K.A.; Tang, S.; Zhou, C.; Han, X.; Wang, M.; Kang, J.; Odongo, N.E.; Tan, Z. Evaluation of different yeast species for improving in vitro fermentation of cereal straws. Asian-Australas. J. Anim. Sci. 2016, 29, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Munoz, C.; Wills, D.A.; Yan, T. Effects of dietary active dried yeast (Saccharomyces cerevisiae) supply at two levels of concentrate on energy and nitrogen utilisation and methane emissions of lactating dairy cows. Anim. Prod. Sci. 2017, 57, 656–664. [Google Scholar] [CrossRef]
- Bayat, A.R.; Kairenius, P.; Stefański, T.; Leskinen, H.; Comtet-Marre, S.; Forano, E.; Chaucheyras-Durand, F.; Shingfield, K.J. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J. Dairy Sci. 2015, 98, 3166–3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darabighane, B.; Salem, A.Z.M.; Aghjehgheshlagh, F.M.; Mahdavi, A.; Zarei, A.; Elghandour, M.M.Y.; Lopez, S. Environmental efficiency of Saccharomyces cerevisiae on methane production in dairy and beef cattle via a meta-analysis. Environ. Sci. Pollut. Res. 2018, 26, 3651–3658. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J.; Wang, J. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. J. Anim. Sci. Biotechnol. 2017, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Chang, Y.; Zhao, L.; Zhou, Z.; Ren, L.; Meng, Q. Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. J. Anim. Sci. Biotechnol. 2014, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Wu, J.; Wang, M.; Zhou, C.; Han, X.; Odongo, E.N.; Tan, Z.; Tang, S. Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats. Arch. Anim. Nutr. 2016, 70, 224–238. [Google Scholar] [CrossRef] [PubMed]
Items | Concentrate | Urea–Calcium Hydroxide-Treated Rice Straw |
---|---|---|
Concentrate ingredients, % dry matter basis | ||
Cassava chip | 63.5 | |
Coconut meal | 10.5 | |
Palm kernel meal | 7.5 | |
Rice bran | 11.0 | |
Urea | 3.0 | |
Molasses | 2.0 | |
Mineral mixture | 1.0 | |
Salt | 1.0 | |
Sulfur | 0.5 | |
Chemical composition | ||
Dry matter, % | 89.7 | 50.7 |
% of dry matter | ||
Organic matter | 94.6 | 90.1 |
Ash | 5.4 | 9.9 |
Crude protein | 14.0 | 4.3 |
Neutral detergent fiber | 25.6 | 70.2 |
Acid detergent fiber | 15.8 | 48.7 |
Total digestible nutrients (TDN) * | 79.8 | 50.4 |
Items | Yeast Supplementation (g/day) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Linear | Quadratic | ||
Dry matter intake | |||||||
Roughage intake | |||||||
kg/day | 1.9 a | 2.0 a | 2.3 b | 2.5 c | 0.18 | 0.04 | 0.43 |
g/kg BW0.75 | 65.9 a | 66.0 a | 68.1 b | 70.6 c | 0.76 | 0.04 | 0.52 |
Concentrate intake | |||||||
kg/day | 0.7 | 0.7 | 0.7 | 0.7 | 0.31 | 0.17 | 0.41 |
g/kg BW0.75 | 17.8 | 18.9 | 17.7 | 19.0 | 1.67 | 0.15 | 0.32 |
Total feed intake | |||||||
kg/day | 2.6 a | 2.7 a | 3.0 b | 3.3 c | 0.09 | 0.04 | 0.05 |
g/kg BW0.75 | 84.7 a | 84.9 a | 85.7 b | 89.6 c | 1.24 | 0.04 | 0.05 |
Nutrient digestibility, % | |||||||
Dry matter | 57.5 | 58.9 | 60.2 | 60.0 | 0.17 | 0.14 | 0.47 |
Organic matter | 62.8 | 62.7 | 62.4 | 63.4 | 0.05 | 0.25 | 0.32 |
Crude protein | 58.6 | 59.1 | 59.7 | 60.2 | 0.09 | 0.17 | 0.21 |
Neutral detergent fiber | 50.1 a | 51.9 a | 53.2 b | 55.2 c | 0.08 | 0.03 | 0.04 |
Acid detergent fiber | 41.4 a | 42.3 a | 44.9 b | 46.9 c | 0.06 | 0.02 | 0.03 |
Items | Yeast Supplementation (g/day) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Linear | Quadratic | ||
Ruminal pH | 6.8 | 6.8 | 6.7 | 6.6 | 0.09 | 0.09 | 0.15 |
Temperature, °C | 39.5 | 39.0 | 39.4 | 39.5 | 0.22 | 0.34 | 0.46 |
NH3–N, mg/dL | 12.1 a | 12.9 a | 13.3 b | 15.6 c | 0.30 | 0.02 | 0.03 |
BUN, mg/dL | 9.1 | 9.5 | 10.7 | 11.3 | 0.06 | 0.52 | 0.62 |
Total VFAs, mmol/L | 90.1 a | 92.8 a | 96.5 b | 100.3 c | 0.15 | 0.03 | 0.04 |
VFAs, mol/100mol | |||||||
Acetic acid (C2) | 68.1c | 66.6 b | 66.4 b | 64.8 a | 0.18 | 0.02 | 0.04 |
Propionic acid (C3) | 20.9 a | 22.6 b | 24.1 c | 26.0 d | 0.16 | 0.02 | 0.03 |
Butyric acid (C4) | 11.0 b | 10.8 b | 9.5 a | 9.2 a | 0.07 | 0.03 | 0.05 |
C2: C3 | 3.3 c | 2.9 b | 2.8 b | 2.5 a | 0.31 | 0.04 | 0.07 |
CH4 (mM) | 29.3 c | 28.1 b | 27.1b | 25.7 a | 0.25 | 0.04 | 0.05 |
Items | Yeast Supplementation (g/day) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Linear | Quadratic | ||
Direct count, cell/mL | |||||||
Protozoa, × 106 cell/mL | 8.1 d | 6.9 c | 5.2 b | 3.5 a | 0.19 | 0.04 | 0.05 |
Real-time PCR, copies/mL rumen content | |||||||
F. succinogenes, × 106 | 3.2 a | 3.6 a | 4.8 b | 5.9 c | 0.07 | 0.04 | 0.07 |
R. flavefaciens, × 105 | 2.1 a | 2.4 a | 3.9 b | 4.8 c | 0.31 | 0.04 | 0.06 |
R. albus, × 106 | 5.0 | 4.9 | 5.2 | 5.5 | 0.16 | 0.06 | 0.08 |
B. fibrisolvens, × 105 | 2.5 a | 3.1 a | 4.4 b | 6.8 c | 0.21 | 0.04 | 0.05 |
Methanogens, × 102 | 6.6 a | 5.8 a | 4.7 b | 3.4 c | 0.09 | 0.04 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phesatcha, K.; Chunwijitra, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Addition of Active Dry Yeast Could Enhance Feed Intake and Rumen Bacterial Population While Reducing Protozoa and Methanogen Population in Beef Cattle. Fermentation 2021, 7, 172. https://doi.org/10.3390/fermentation7030172
Phesatcha K, Chunwijitra K, Phesatcha B, Wanapat M, Cherdthong A. Addition of Active Dry Yeast Could Enhance Feed Intake and Rumen Bacterial Population While Reducing Protozoa and Methanogen Population in Beef Cattle. Fermentation. 2021; 7(3):172. https://doi.org/10.3390/fermentation7030172
Chicago/Turabian StylePhesatcha, Kampanat, Krittika Chunwijitra, Burarat Phesatcha, Metha Wanapat, and Anusorn Cherdthong. 2021. "Addition of Active Dry Yeast Could Enhance Feed Intake and Rumen Bacterial Population While Reducing Protozoa and Methanogen Population in Beef Cattle" Fermentation 7, no. 3: 172. https://doi.org/10.3390/fermentation7030172
APA StylePhesatcha, K., Chunwijitra, K., Phesatcha, B., Wanapat, M., & Cherdthong, A. (2021). Addition of Active Dry Yeast Could Enhance Feed Intake and Rumen Bacterial Population While Reducing Protozoa and Methanogen Population in Beef Cattle. Fermentation, 7(3), 172. https://doi.org/10.3390/fermentation7030172