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Abstract: Flavour in Scotch malt whisky is a key differentiating factor for consumers and producers
alike. Yeast (commonly Saccharomyces cerevisiae) metabolites produce a significant amount of this
flavour as part of distillery fermentations, as well as ethanol and carbon dioxide. Whilst yeast strains
contribute flavour, there is limited information on the relationship between yeast strain and observed
flavour profile. In this work, the impact of yeast strain on the aroma profile of new make spirit
(freshly distilled, unmatured spirit) was investigated using 24 commercially available active dried
yeast strains. The contribution of alcoholic, fruity, sulfury and sweet notes to new make spirit by
yeast was confirmed. Generally, distilling strains could be distinguished from brewing and wine
strains based on aroma and ester concentrations. However, no statistically significant differences
between individual yeast strains could be perceived in the intensity of seven aroma categories
typically associated with whisky. Overall, from the yeast strains assessed, it was found that new
make spirit produced using yeast strains marketed as ‘brewing’ strains was preferred in terms of
acceptability rating.
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1. Introduction

The production of Scotch malt whisky is both beautifully simple and extraordinarily
complex. Simplicity lies in the use of only three ingredients and the same basic processing
features. However, no two production sites or operational parameters are alike and the
myriad choices, from barley variety and malting specification, fermentation regime, still
design and operation, through to cask selection and maturation time, lead to immense
product diversity. The final flavour and aroma of whisky is due to the interaction of
more than 1000 flavour-active compounds termed congeners. The major congener classes
that were identified in Scotch whisky are higher alcohols, esters, acids, phenols, lignin-
degradation products, and lactones. Studies of processed raw materials, fermentation
products, spirit distillate and matured whisky indicate the likely production stage (s) of
flavour congeners (Figure 1) and highlight the role of yeast in the production of floral,
fruity, and sweet attributes [1].

It is noted that some congener compounds could be generated in multiple stages of the
production process. Furfurals and pyrazines from Maillard reactions that provide biscuity,
chocolatey or marzipan flavours could arise from conditions in mashing, distillation and
cask preparation as well as kilning [2]. Esters are primarily yeast metabolites but are also
produced, albeit more slowly, as a result of condensation reactions in the cask [3], or, to a
lesser extent, in the still [4]. Phenols are characteristic of peated malt, but also emerge in
fermentation [5] and as oak decomposition products in the cask [3]. Lactones are principally
formed as oak extractives [3] but were also identified in fermentation [6].
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Figure 1. Congeners categorized by Scotch whisky production stage (VDKs: Vicinal Diketones) [1].

Under The Scotch Whisky Regulations (2009) [7], for a whisky to be denoted as ‘Scotch
whisky’, it must be distilled and matured in oak casks in Scotland where malted barley
and/or other cereal ingredients are processed, converted, and fermented at a Scottish
distillery. The stipulation surrounding fermentation is simply that it is ‘by yeast’. Yeast
strains used in industrial distillery fermentations are predominantly those belonging
to Saccharomyces cerevisiae. Throughout much of the 20th century, spent brewing yeast
was employed in both baking and whisky production, prior to the initial development
of specialised leavening yeast strains for baking and subsequent specialised distilling
strains with improved characteristics more suited to distillery fermentations. The typical
commercial strains that are currently used derive from a hybrid between ale yeast and a
wild S. cerevisiae strain (previously known as S. diastaticus) with amylolytic properties [8].
Such strains are high yielding in terms of ethanol and produce consistent concentrations of
desired congeners. As a result, both grain and most malt whisky distilleries predominantly
use a sole strain of distilling yeast, with the practice of adding spent brewing yeast having
fallen out of favour.

The focus on spirit yield and consistency in congener production is a sensible com-
mercial strategy. However, a number of distillers are seeking a greater diversity in flavour
profile in order to either enhance specific attributes or to expand the palette for blending.
One route to achieve this is through yeast choice.

In this work, the link between yeast strain selection and new make spirit aroma profile
was investigated using 24 commercially available active dried yeast strains. The influence
of yeast application type in terms of designation as ‘distilling’, ‘brewing’ or ‘wine’ in
predicting new make spirit flavour is discussed.

2. Materials and Methods
2.1. Wort Preparation

A concentrated batch of unboiled fresh wort (SG of 1.0726) was produced from
Distillers Malt (Muntons, Stowmarket, UK) using the International Centre for Brewing
and Distilling (ICBD) pilot brewing kit at Heriot-Watt University, Edinburgh. A weight
of 55 kg of malt was milled using a two-roller mill (Fraser Agricultural, Inverurie, GBR)
then mashed with 150 L of water at 64 ◦C for 1 h prior to separation using a lauter tun. The
grain bed was then sparged continuously with 81 ◦C water to obtain the desired volume
and gravity. Fresh wort was frozen in aliquots and stored at −20 ◦C. When required, the
wort was defrosted and diluted to the desired gravity (1.0612 ± 0.0018). An amount of
850 mL of defrosted unboiled wort was diluted with 150 mL of autoclaved water. Gravities
were measured using a benchtop Anton Paar DMA 4500 (Anton Paar, St. Albans, UK).
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2.2. Yeast Viability

Yeast viability assessments were carried out using the ABER CountstarTM automatic
yeast counter (ABER Instruments, Aberystwyth, UK) using methylene blue stain. In a
1.5 mL Eppendorf tube, 10 µL of yeast slurry was pipetted into 990 µL of sodium acetate
(0.1 M) (Fisher Scientific, Loughborough, UK) EDTA (10 mM) (Sigma Aldrich, Milwaukee,
WI, USA) solution (pH 4.5) and agitated. Into another 1.5 mL Eppendorf tube, 500 µL of the
resulting 1000 µL of solution was then transferred into 500 µL of methylene blue staining
solution (Fisher Scientific, Loughborough, UK) and agitated. An amount of 20 µL of the
stained solution (dilution factor of 200) was then pipetted into a chamber on an ABER
CountstarTM slide.

2.3. Yeast Rehydration, Pitching and Fermentation

A weight per volume pitching rate of 1 g active dried yeast (ADY) per 1 L of wort was
used. For rehydration, ADY was slurried with autoclaved water (30 ◦C) then placed in an
unagitated water bath (Grant SUB36; Grant Instruments, Shepreth, UK) at 30 ◦C for 60 min
prior to pitching.

Fermentations using individual yeast strains (Table 1) were performed. Fermentation
time was set at 72 h, and temperature at 35 ◦C, with fermentations carried out in tripli-
cate for each strain. Fermentations (300 mL) were carried out in 500 mL conical flasks
(Fisher Scientific, Loughborough, UK). The triplicate fermentations per yeast strain were
consolidated after 72 h to give 900 mL of wash. Wash samples were centrifuged for five min-
utes (1006.2 g) to remove yeast from suspension (Denley, Guangzhou, China). Wash alcohol
by volume (ABV%) calculations were then conducted by first measuring the specific gravity
of a centrifuged wash sample using a benchtop Anton Paar DMA 4500 (Anton Paar, St.
Albans, UK). The ABV% of the sample was then estimated using the following formula:
Alcohol by volume (ABV%) = (Original Gravity − Final Gravity) × 135.25.

2.4. Distillation

Wash distillations were carried out using 2 L copper pot stills (operating capacity of
1 L) and associated worm-tub condensers (Copper-Alembic, Gandra, Portugal). Stills were
heated using electric hotplates (Duronic, Romford, UK). 900 mL of wash was charged per
yeast strain. 500 µL of silicon-based antifoam was added to each 900 mL wash distillation.
The collection of low wines was carried out until the distillate coming off the still was 1.5%
alcohol by volume (ABV).

Low wines distillations were carried out using 2 L copper pot stills (operating capacity
of 1 L) and associated worm-tub condensers (Copper-Alembic, Gandra, Portugal). Approx-
imately 200–300 mL of low wines was charged per yeast strain, and 2.5 mL of foreshots
were collected per spirit distillation. After the collection of foreshots, a 3.5 mL sample
of distillate (spirit or ‘hearts cut’) was collected and the ABV (%) recorded. Spirit was
collected until the distillate coming off the still was 70% ABV. Feints (distillate produced
post spirit cut) were not collected in this experiment.

Alcohol by volume (ABV%) and density values were determined using a handheld
Anton Paar DMA35 density meter (Anton Paar, St. Albans, UK).
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Table 1. Yeast strains used in this study.

Number Name Yeast Strain Application

1 Pinnacle MG+ Saccharomyces cerevisiae Whisk(e)y
2 SafSpirits M1 S. cerevisiae Whisk(e)y
3 SafSpirits USW6 S. cerevisiae Bourbon/Whiskey
4 Pinnacle M S. cerevisiae Whisk(e)y
5 Distilamax MW S. cerevisiae Whisk(e)y
6 Distilamax GW S. cerevisiae Whisk(e)y
7 Pinnacle S S. cerevisiae Whisk(e)y
8 Pinnacle G S. cerevisiae Whisk(e)y
9 Kerry M S. cerevisiae Whisk(e)y
10 Distilamax XP S. cerevisiae var. diastaticus Whisk(e)y
11 Safale T58 S. cerevisiae English/Belgian ale
12 Safale WB06 S. cerevisiae Wheat beer
13 Safale BE-256 S. cerevisiae Belgian ale
14 Safale S-04 S. cerevisiae US/English ale
15 Saflager 189 S. pastorianus Swiss lager
16 Safale K-97 S. cerevisiae German/Belgian ale
17 Safale S-33 S. cerevisiae Belgian/English ale
18 Safale BE134 S. cerevisiae var diastaticus Belgian-Saison
19 Hothead S. cerevisiae Norwegian ale
20 Kveik S. cerevisiae Norwegian ale
21 LalvinV116 S. cerevisiae Ice wine
22 Lalvin EC1118 S. cerevisiae var. bayanus Champagne
23 Lalvin ICV OKAY S. cerevisiae Wine
24 Exotics SPH Hybrid S. cerevisiae/S. paradoxus Red wine

2.5. Gas Chromatography Mass Spectrometry (GC/MS)

18 new make spirit (NMS) samples were analysed to determine specific ester concen-
trations using a solid-phase microextraction (SPME) GC/MS method developed within
Heriot-Watt University’s International Centre for Brewing and Distilling (ICBD). Specific ester
concentrations were determined using a Shimadzu QP2010 Ultra (Shimadzu, Kyoto, Japan)
GC/MS integrated system with split/splitless injector and Shimadzu AOC 5000 autosampler.
SPME was conducted using a 65 mm polydimethylsiloxane/divinylbenzene coated fibre
(Supleco, Bellefonte, PN, USA). Samples were prepared by adding 1 mL of NMS to a
15 mL vial and 5 mL of distilled water then added to the NMS and mixed. Data were
handled using Shimadzu GC/MS Solutions data handling systems. For instrument details
see Table 2.

Table 2. GC/MS Instrument conditions.

SPME
Conditioning: 5 min at 70 ◦C

Extraction: 5 min
Desorption: 1 min

Column DB Wax UI (30 m × 0.25 mm × 0.25 µm) (Agilent, Santa Clara, CA, USA)
Carrier gas Helium (BOC; 5.0)

Internal standard Methyl heptanoate

Oven
40 ◦C for 3 min; ramp to 100 ◦C at 10 ◦C/min; ramp to 160 ◦C at 4 ◦C/min;

ramp to 220 ◦C at 10 ◦C/min. Hold for 100 min. Ramp to 250 ◦C at
70 ◦C/min. Hold for 3 min.

2.6. Sensory Analysis

Quantitative descriptive analysis: Aroma Intensity Rating. A form of quantitative de-
scriptive analysis (QDA) was carried out on the NMS samples. Sensory analysis was carried
out in two phases: (1) Language familiarisation, (2) NMS nosing, undiluted (still strength).

The language familiarisation sessions utilised descriptors from the Scotch whisky
research institute (SWRI) whisky wheel [9] and aroma standards using the Whisky aroma
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kit (The Aroma Academy, Aberdeen, UK). A total of 200 min of language familiarisation
was carried out with the panel (n = 5).

To avoid the introduction of bias derived from numerical scales, the NMS nosing
ballot constructed for this experiment was an adaptation of a graphic line scale [10]. In
place of a line scale it consists of three tick boxes, each with a corresponding word anchor
relating to the intensity of the descriptor. The word anchors were, from left to right: ‘Not
present’, ‘Mild/Subtle’ and ‘Strongly present’. Unbeknownst to the assessors, the tick boxes
represented a scale of 0–1.0. The assessor responses were converted to their numerical
value by the panel leader after the conclusion of the sensory session.

2.7. Hedonic Assessment: Acceptability Rating

An acceptability test using the nine-point hedonic scale was also performed. The nine-
point hedonic scale was historically used for the hedonic assessment of food, beverages
and non-food products [11].

Assessors (n = 5) were asked to nose samples individually and then check only one
of the phrases from the nine presented on a ballot that best described their opinion of the
sample. The phrases represented a scale of 1–9 where 9 represented ‘like extremely’ [11].
This assessment was performed in order to narrow down the initial selection of yeast
strains [12].

2.8. Statistical Analysis

Kolmogorov–Smirnov, Analysis of Variance (ANOVA), Friedman and Games Howell
multiple comparison tests were performed using the IBM SPSS statistics software package
(IBM, Armonk, NY, USA).

The Kolmogorov–Smirnov test compares an observed sample distribution and a
specified theoretical distribution and is sometimes referred to as a normality test [13].
Analysis of variance (ANOVA) is a statistical technique that tests to determine if significant
differences exist between three or more groups and this includes one group with multiple
variations [14] such as the yeast used in this work. The Friedman test in a non-parametric
one-way ANOVA [15].

The Games Howell multiple comparison test is a pairwise comparison procedure,
designed for use with unequal sample sizes, that can determine which specific groups are
statistically significantly different [16,17].

3. Results
3.1. Yeast Viability and Wash Alcohol Volume

The yeast viability, measured using methylene blue staining following 60 min of
rehydration in water at 30 ◦C, was found to be less than 90% for all strains tested. However,
no significant difference was found in the average final-wash alcohol by volume (ABV).
Ten of the yeast strains assessed achieved average final-wash ethanol concentrations of 8%
ABV or over. This included all of the yeast strains marketed as ‘distilling’ strains (1–10),
with the exception of yeast strain 7 (Pinnacle S).

3.2. Aroma Intensity Ratings

The aroma intensity ratings experiment intended to investigate whether the yeast
strain used to produce the new make spirit had an effect on the perceived intensity of seven
common aromas associated with whisky new make spirit. Seven individual Friedman tests
were carried out.

From the individual Friedman tests, it was found that there was no statistically
significant difference in the perceived intensity of the fruity (fresh) aroma depending on
the yeast strain used to produce the new make spirit (χ2 (22) = 25.26, p = 0.285). This was
also the case for all of the other aroma categories; fruity (2), sulphury, floral, sweet, cereal
and feinty (χ2 (22) = 27.03, p = 0.210, χ2 = 27.49, p = 0.193, χ2 = 13.75, p = 0.910, χ2 = 31.63,
p = 0.084, χ2 = 25.14, p = 0.290 and χ2 = 30.31, p = 0.11, respectively).
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Distilling yeast strain 2 achieved the highest average intensity rating for the fruity
(fresh) aroma category (0.7; Figure 2a), with both distilling and wine yeast receiving an
average score of 0.45.

1 
 

 

Figure 2. Average aroma intensity rating from 0 (absent) to 1.0 (most intense) for seven common
aromas associated with whisky new make spirit: (a) Fruity (Fresh), (b) Fruity (Dried), (c) Floral,
(d) Sweet, (e) Cereal, (f) Sulfury, (g) Feinty. Ratings are grouped by yeast type: Distilling, Brewing, or
Wine; n = 5.

This suggests that the NMS spirit produced using these strains possesses the fruity
characteristics of the solvent-like and fresh fruit variety. As described in the Scotch Whisky
Research Institute (SWRI) flavour wheel [9].

The ‘Fruity (dried)’ category relates to the dried fruit aroma category described on
the SWRI whisky flavour wheel [9]. Brewing yeast strain 18 achieved the lowest average
rating for this attribute (0.05) (Figure 2b). Regardless of classification, the average intensity
rating was below 0.5 in relation to the Fruity (dried) attribute. This suggests an overall
lower perception of this attribute by the panel in the given samples. In addition, only NMS
samples produced using distilling yeast 10 and brewing yeast 15 could be considered as
exhibiting mild-to-strong fruity characteristics of the dried fruit variety (Figure 2b).

In relation to the floral attribute, which is associated with fresh flower-like aromas, all
strains achieved average intensity ratings below 0.5 (Figure 2c). More specifically, with the
exception of yeast strain 5 (0.45), all of the new make spirit produced achieved average
aroma intensity ratings or 0.4 or lower, which suggests that the NMS produced using the
yeast strains included in this study possessed weak floral aroma characteristics.
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The sweet aroma category was associated with honey, vanilla and caramel-like
aroma [9]. Six yeast strains achieved average aroma intensity ratings above 0.5, with
yeast strain 6 achieving the highest average rating of 0.75 (Figure 2d). With the exceptions
of yeast strains 4, 10, 21, 22 and 23, all of the assessed yeast strains achieved average
intensity ratings of 0.4 or above (Figure 2d) suggesting that the NMS produced using these
yeast strains exhibits mild-to-strong sweet aroma characteristics. Interestingly, three of the
four wine yeast strains achieved scores below 0.4, with the average score of 0.41 caused by
a single higher-scoring strain. Overall, distilling and brewing strains were ranked higher
with an average score of 0.48.

Brewing yeast strain 20 scored significantly high in relation to cereal notes (0.9; Figure 2e),
which include toasted, malt and husky aromas. On average the brewing yeast scored
higher (0.5) than both the distilling and wine yeast (0.42 and 0.43, respectively).

Yeast strains 3, 11, 17, 20, 21 and 24, achieved average intensity ratings of 0.1 or lower
in relation to the sulfury aroma category. This suggests a particularly low perception of
this attribute by the assessors in these NMS samples (Figure 2f). Yeast strains 19 and 23 on
the other hand both achieved the highest average rating for this attribute at 0.45 (Figure 2f).
Overall, the mean average intensity ratings did not exceed 0.3 across all of the yeast strains
assessed suggesting that sulfury characteristics in the NMS were minimal.

The average aroma intensity rating for feinty notes, which include leathery, tobacco
and sweaty aromas, was consistent across all yeast strains with brewing and wine yeast
averaging 0.45 and distilling yeast 0.4. Of the brewing yeast, strains 14 and 20 were the
highest ranking.

3.3. Ester Profiles

The concentration of seven esters was assessed in new make spirit samples from eight
distilling yeast strains, eight brewing yeast strains and two wine yeast strains used in
the aroma intensity test. Ethyl hexadecanoate was not detected in any of the samples.
The results for ethyl hexanoate, ethyl lactate, ethyl decanoate, phenylethyl acetate, ethyl
dodecanoate and ethyl octanoate are shown in Table 3.

Table 3. Average ester concentration in new make spirit per yeast type: Distilling (n = 8), Brewing (n = 8), Wine (n = 2).

Average Concentration per Yeast Type (mg/L)

Ester Aroma Aroma Threshold
(mg/L) [18] Distilling Brewing Wine

Ethyl hexanoate Aniseed, apple-like 0.076 1.71 0.52 1.60

Ethyl lactate Buttery, butterscotch,
artificial strawberry >14 1.30 23.90 7.97

Ethyl decanoate Floral, soapy 1.1 1.09 0.79 1.96
Phenylethyl

acetate Roses, honey, waxy 0.7 1.63 0.92 2.47

Ethyl dodecanoate Soapy, estery 0.64 0.25 0.56 0.92
Ethyl octanoate Sour apple 0.24 0.75 0.71 1.41

Total 6.73 27.4 16.33

All samples exceeded the threshold value for ethyl hexanoate with distilling yeast gen-
erating new make spirit with the highest concentration. Samples from brewing yeast con-
tained an average of 23.90 mg/L ethyl lactate, exceeding the aroma threshold of 14 mg/L.

Samples from wine yeast contained the highest concentration of ethyl decanoate,
phenylethyl acetate, ethyl dodecanoate, and ethyl octanoate, with each case exceeding
threshold levels. Threshold levels were not reached for either distilling or brewing strains
for ethyl decanoate and ethyl dodecanoate.

The total ester concentration, by addition of each of the six individual averages, places
brewing strains highest followed by wine and then distilling yeast (Table 3).
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3.4. Hedonic Assessment: Acceptability Ratings

New make spirit samples produced using the 24 different yeast strains used in this
study were assessed individually and assigned an acceptability rating using a ballot
constructed based on the 9-point hedonic scale.

It is generally not recommended to perform statistical analyses of data derived from
hedonic assessments such as the 9-point hedonic scale, as the type of data collected is not
mathematically suitable. However, mean ratings can be collected and ratings of seven or
higher are considered indicative of a product of a highly acceptable sensory quality [19].

As shown in Table 4, seven of the twenty-four yeast strains achieved an average
acceptability rating of 7 or above.

Table 4. Average mean acceptability ratings of new make spirit samples that achieved a mean rating
of 7 or above (out of 9).

Yeast Strain Mean Acceptability Rating

14 7.75
2 7.5

13 7.5
20 7.5
11 7.25
16 7
17 7

Yeast strain 14 (brewing yeast) achieved the highest average acceptability rating. Yeast
strains 2, 13 and 20 (distilling, brewing, and brewing yeast, respectively) jointly achieved
the second highest average acceptability rating (Table 4). Thirdly, these were followed
by yeast strain 11 (brewing yeast) and then joint fourth by yeast strains 16 and 17 (both
brewing yeast).

From these data and the selection of yeast strains used in this study, it appears that,
with the exception of spirit produced using yeast strain 2, NMS produced using ‘brewing’
strains were found to be the more acceptable products by the panel.

4. Discussion

Multiple studies identified that different yeast strains produce different congener
profiles and different aromas in beer [20–22]. Furthermore, the mechanisms for production
of higher alcohols and esters were well studied [23,24]. The difference in congener profiles
between different strains, (even within species), depends on differences in the metabolism
of sugars, proteins and amino acids and autolysis of yeast [25].

Overall, although statistical analysis produced no credible evidence from this study
that the yeast strain had a statistically significant impact on the perceived intensity of the
aroma categories assessed, it is suggested from the results of the panel responses that there
were differences in the overall perceived aroma profiles of the assessed new make spirit
(NMS) profiles and that a large selection of the yeast strains used in this study produced
NMS with distinctly fresh-fruit-like, sweet and non-sulphury characters.

Commercially, yeasts are commonly split and marketed into groups related to their
intended industrial application. To look more broadly at the yeast strains involved in this
study, the strains were separated into three groups: distilling strains, brewing strains, or
wine strains, based on either the industrial application or fermentation medium specified
by the yeast manufacturer. The categorisation of strains based on application (distilling,
brewing, or wine) highlighted distinct patterns. Generally, distilling yeast was regarded as
fruitier than brewing or wine yeast. Brewing yeast was regarded as having cereal, sulfury,
and feinty notes, and wine yeast was rated alongside distilling yeast for fresh fruit aroma
and highest for floral aroma (although intensity ratings for floral aroma were low across
all samples). These results compare with analytical studies of ester concentration, with
wine yeast containing, on average, higher concentrations of ethyl decanoate, phenylethyl
acetate, ethyl dodecanoate, and ethyl octanoate, compared to distilling and brewing yeast.
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The aroma characteristics of these esters are floral, rose, estery, and sour apple, respectively.
These results also concur with data from the literature and unpublished industry studies;
higher alcohols, acetate esters and ethyl esters are more commonly cited in fermentation
studies with distilling yeast in comparison with brewing or wine yeasts [1,12].

That distilling yeast was perceived as fruitier than brewing or wine yeast contrasts
with the total ester concentration (Table 3). However, the analysis of aroma compounds
and the perceived character of matured Scotch whisky demonstrates that the relative
levels of individual esters within the headspace may be low but the interactions with other
components within the spirit matrix leads to an increase in the overall ‘estery’ character [26].

The results from the hedonic assessment clearly indicate that brewing strains produce
new make spirit that is ‘most acceptable’. Six of the top seven scoring strains were brewing
strains, with each strain also ranking highly in at least one attribute within the aroma
intensity ratings. On average brewing strains also produced a spirit with a significantly
higher concentration of ethyl lactate, a compound associated with buttery, butterscotch
and artificial strawberry characteristics. Traditionally, brewing strains were employed
within distillery fermentations either as the main production yeast, or in co-fermentation
at additions of up to 50%. The results from this study highlight the positive influence that
brewing strains of S. cerevisiae have on new make spirit aroma.

Borneman et al. [27] warns that high levels of genetic similarity exist between commer-
cial S. cerevisiae strains which potentially reduce the scope for genetic, metabolic, and thus
new congeneric differences. The lack of statistically significant differences between indi-
vidual strains in both aroma intensity ratings and in ester production in this study reflects
this theory. Lambrechts and Pretorius [28] reviewed the production of higher alcohols and
esters in Saccharomyces strains and found them to be strain-dependent. For alcohols this
is potentially due to differences in amino acid utilisation in the Ehrlich pathway. These
metabolic differences were found to be greater in non-Saccharomyces yeasts [29]. For ester
synthesis, the precursor alcohol and acyl-CoA concentrations, as well as the expression of
the Eeb1 and Eht1 genes [30], were shown to be key [31]. Saerens et al. [32] later reported
that yeasts could be chosen for the production of desired alcohols and esters based on the
expression levels of genes involved in their biosynthesis. The production of congener types
by non-conventional yeasts, such as Hanseniaspora guillermondii, is cited commonly in the
literature, with multiple studies demonstrating higher concentrations of higher alcohols
and esters in comparison to brewing and wine yeast strains [33,34]. As such, there is a
great potential in their application within distillery fermentations.

5. Conclusions

Developments in yeast isolation, propagation techniques, and format have greatly
expanded the diversity of the yeast strains available to Scotch whisky distillers. It is also
no secret in the distilling industry that using alternative yeast strains, compared to the
‘industry standards’, is a perfectly viable production strategy. There are already a number
of products available on the Scotch whisky market that are produced with yeast strains
that are either proprietary or strains that were not initially developed and marketed for
whisky fermentations.

This work highlights the aroma characteristics imparted by yeast, the variation in
overall aroma perception, and consequently the importance of yeast strain selection. There
is clear scope to increase the palette of flavour attributes in new make spirit giving distillers
an opportunity to innovate in this very traditional process.
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