The Influence of Yeast Strain on Whisky New Make Spirit Aroma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wort Preparation
2.2. Yeast Viability
2.3. Yeast Rehydration, Pitching and Fermentation
2.4. Distillation
2.5. Gas Chromatography Mass Spectrometry (GC/MS)
2.6. Sensory Analysis
2.7. Hedonic Assessment: Acceptability Rating
2.8. Statistical Analysis
3. Results
3.1. Yeast Viability and Wash Alcohol Volume
3.2. Aroma Intensity Ratings
3.3. Ester Profiles
3.4. Hedonic Assessment: Acceptability Ratings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waymark, C. How Well Can the Choice of Yeast Strain Predict Scotch Malt Whisky New Make Spirit flavour profile? Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 13 August 2021. [Google Scholar]
- Piggott, J.R. Whisky, Whiskey and Bourbon: Composition and Analysis of Whisky. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 514–518. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Puech, J.-L. Wood maturation of distilled beverages. Trends Food Sci. Technol. 1998, 9, 95–101. [Google Scholar] [CrossRef]
- Nicol, D. Batch Distillation. In Whisky Technology, Production and Marketing, 2nd ed.; Russell, I., Stewart, G., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; pp. 155–178. [Google Scholar]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41 (Suppl. S1), S95–S128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanikawa, A.; Yamamoto, N.; Hosoi, K. The influence of brewers’ yeast on the quality of malt whisky. In Distilled Spirits: Tradition and Innovation; Nottingham University Press: Nottingham, UK, 2004; pp. 95–101. [Google Scholar]
- The Scotch Whisky Regulations 2009. Available online: https://www.legislation.gov.uk/uksi/2009/2890/contents/made (accessed on 7 October 2021).
- Campbell, I. Yeast and Fermentation. In Whisky: Technology, Production and Marketing; Russell, I., Bamforth, C., Stewart, G.G., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2003; pp. 117–145. [Google Scholar]
- Jack, F. Sensory Analysis. In Whisky Technology, Production and Marketing, 2nd ed.; Russell, I., Stewart, G., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; pp. 229–242. [Google Scholar]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Descriptive Analysis. In Sensory Evaluation Practices, 4th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2012; pp. 233–289. [Google Scholar]
- Lawless, H.T. Acceptance Testing. In Sensory Evaluation of Food, 2nd ed.; Heldman, D., Ed.; Springer: New York, NY, USA, 2010; pp. 325–342. [Google Scholar]
- Muir-Taylor, V.G. Yeast Selection for Scotch Malt Whisky Fermentations: An Assessment of Commercially Available Active Dried Yeast Strains. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 4 March 2021. [Google Scholar]
- Hoffman, J.I.E. Categorical and Cross-classified data: McNemar’s Test, Kolmogorov-Smirnov Tests, Concordance. In Biostatistics for Medical and Biomedical Practitioners; Hoffman, J.I.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 221–237. [Google Scholar]
- MacFarland, T.W. Oneway Analysis of Variance (ANOVA). In Introduction to Data Analysis and Graphical Presentation in Biostatistics with R Statistics in the Large; Macfarland, T.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 73–97. [Google Scholar]
- Scheff, S.W. Nonparametric statistics. In Fundamental Statistical Principles for the Neurobiologist a Survival Guide; Scheff, S.W., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 157–182. [Google Scholar]
- Saunder, D.C.; DeMars, C.E. An Updated Recommendation for Multiple Comparisons. Adv. Methods Pract. Psychol. Sci. 2019, 2, 26–44. [Google Scholar] [CrossRef]
- Midway, S.; Robertson, M.; Shane, F.; Kaller, M. Comparing multiple comparisons: Practical guidance for choosing the best multiple comparisons test. PeerJ 2020, 8, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Salo, P.; Nykänen, L.; Suomalainen, H. Odor Thresholds and Relative Intensities of Volatile Aroma Components in an Artificial Beverage Imitating Whisky. J. Food Sci. 1972, 37, 394–398. [Google Scholar] [CrossRef]
- Everitt, M. Consumer-targeted sensory quality. In Global Issues in Food Science and Technology; Barbosa-Canovas, G., Buckle, K., Colonna, P., Lineback, D., Mortimer, A., Speiss, W., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 117–128. [Google Scholar]
- ÄYräpää, T. Formation of Higher Alcohols by Various Yeasts. J. Inst. Brew. 1968, 74, 169–178. [Google Scholar] [CrossRef]
- Nykänen, L.; Nykänen, I. Production of Esters by Different Yeast Strains in Sugar Fermentations. J. Inst. Brew. 1977, 83, 30–31. [Google Scholar] [CrossRef]
- Peddie, H.A.B. Ester formation in brewery fermentations. J. Inst. Brew. 1990, 96, 327–331. [Google Scholar] [CrossRef]
- Pires, E.; Teixeira, J.; Brányik, T.; Vicente, A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, G.G. Esters–the most important group of flavour-active compounds in alcoholic beverages. In Distilled Spirits: Production, Technology and Innovation; Bryce, J.H., Piggot, J.R., Stewart, G.G., Eds.; Nottingham University Press: Nottingham, UK, 2004; Volume 2, pp. 43–250. [Google Scholar]
- Fleet, G.H. Wine yeasts for the future. FEMS Yeast Res. 2008, 8, 979–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, G.M.; Fotheringham, R.N.; Jack, F.R. Understanding flavour development in Scotch Whisky. In Distilled Spirits: Tradition and Innovation; Bryce, J.H., Stewart, G.G., Eds.; Nottingham University Press: Nottingham, UK, 2008; pp. 161–167. [Google Scholar]
- Borneman, A.R.; Forgan, A.H.; Kolouchova, R.; Fraser, J.A.; Schmidt, S.A. Whole genome comparison reveals high levels of inbreeding and strain redundancy across the spectrum of commercial wine strains of Saccharomyces cerevisiae. G3 Genes Genomes Genet. 2016, 6, 957–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its Importance to Wine Aroma-A Review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Herraiz, T.; Reglero, G.; Herraiz, M.; Martin-Alvarez, P.J.; Cabezudo, M.D. The influence of the yeast and type of culture on the volatile composition of wines fermented without sulfur dioxide. Am. J. Enol. Vitic. 1990, 41, 313–318. [Google Scholar]
- Saerens, S.M.G. The Saccharomyces cerevisiae EHT1 and EEB1 Genes Encode Novel Enzymes with Medium-chain Fatty Acid Ethyl Ester Synthesis and Hydrolysis Capacity. J. Biol. Chem. 2006, 281, 4446–4456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderbank, J.; Hammond, J.R.M. Influence of Higher Alcohol Availability on Ester Formation by Yeast. J. Am. Soc. Brew. Chem. 1994, 52, 84–90. [Google Scholar] [CrossRef]
- Saerens, S.M.G.; Verbelen, P.J.; Vanbeneden, N.; Thevelein, J.M.; Delvaux, F.R. Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl. Microbiol. Biotechnol. 2008, 80, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Bourbon-Melo, N.; Palma, M.; Rocha, M.P.; Ferreira, A.; Bronze, M.R.; Elias, H.; Sá-Correia, I. Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to enhance the aromatic profile of beer in mixed-culture fermentation with Saccharomyces cerevisiae. Food Microbiol. 2021, 95, 103678. [Google Scholar] [CrossRef] [PubMed]
- Gamero, A.; Belloch, C.; Querol, A. Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions. Microb. Cell Factories 2015, 14, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number | Name | Yeast Strain | Application |
---|---|---|---|
1 | Pinnacle MG+ | Saccharomyces cerevisiae | Whisk(e)y |
2 | SafSpirits M1 | S. cerevisiae | Whisk(e)y |
3 | SafSpirits USW6 | S. cerevisiae | Bourbon/Whiskey |
4 | Pinnacle M | S. cerevisiae | Whisk(e)y |
5 | Distilamax MW | S. cerevisiae | Whisk(e)y |
6 | Distilamax GW | S. cerevisiae | Whisk(e)y |
7 | Pinnacle S | S. cerevisiae | Whisk(e)y |
8 | Pinnacle G | S. cerevisiae | Whisk(e)y |
9 | Kerry M | S. cerevisiae | Whisk(e)y |
10 | Distilamax XP | S. cerevisiae var. diastaticus | Whisk(e)y |
11 | Safale T58 | S. cerevisiae | English/Belgian ale |
12 | Safale WB06 | S. cerevisiae | Wheat beer |
13 | Safale BE-256 | S. cerevisiae | Belgian ale |
14 | Safale S-04 | S. cerevisiae | US/English ale |
15 | Saflager 189 | S. pastorianus | Swiss lager |
16 | Safale K-97 | S. cerevisiae | German/Belgian ale |
17 | Safale S-33 | S. cerevisiae | Belgian/English ale |
18 | Safale BE134 | S. cerevisiae var diastaticus | Belgian-Saison |
19 | Hothead | S. cerevisiae | Norwegian ale |
20 | Kveik | S. cerevisiae | Norwegian ale |
21 | LalvinV116 | S. cerevisiae | Ice wine |
22 | Lalvin EC1118 | S. cerevisiae var. bayanus | Champagne |
23 | Lalvin ICV OKAY | S. cerevisiae | Wine |
24 | Exotics SPH | Hybrid S. cerevisiae/S. paradoxus | Red wine |
SPME | Conditioning: 5 min at 70 °C Extraction: 5 min Desorption: 1 min |
Column | DB Wax UI (30 m × 0.25 mm × 0.25 μm) (Agilent, Santa Clara, CA, USA) |
Carrier gas | Helium (BOC; 5.0) |
Internal standard | Methyl heptanoate |
Oven | 40 °C for 3 min; ramp to 100 °C at 10 °C/min; ramp to 160 °C at 4 °C/min; ramp to 220 °C at 10 °C/min. Hold for 100 min. Ramp to 250 °C at 70 °C/min. Hold for 3 min. |
Average Concentration per Yeast Type (mg/L) | |||||
---|---|---|---|---|---|
Ester | Aroma | Aroma Threshold (mg/L) [18] | Distilling | Brewing | Wine |
Ethyl hexanoate | Aniseed, apple-like | 0.076 | 1.71 | 0.52 | 1.60 |
Ethyl lactate | Buttery, butterscotch, artificial strawberry | >14 | 1.30 | 23.90 | 7.97 |
Ethyl decanoate | Floral, soapy | 1.1 | 1.09 | 0.79 | 1.96 |
Phenylethyl acetate | Roses, honey, waxy | 0.7 | 1.63 | 0.92 | 2.47 |
Ethyl dodecanoate | Soapy, estery | 0.64 | 0.25 | 0.56 | 0.92 |
Ethyl octanoate | Sour apple | 0.24 | 0.75 | 0.71 | 1.41 |
Total | 6.73 | 27.4 | 16.33 |
Yeast Strain | Mean Acceptability Rating |
---|---|
14 | 7.75 |
2 | 7.5 |
13 | 7.5 |
20 | 7.5 |
11 | 7.25 |
16 | 7 |
17 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waymark, C.; Hill, A.E. The Influence of Yeast Strain on Whisky New Make Spirit Aroma. Fermentation 2021, 7, 311. https://doi.org/10.3390/fermentation7040311
Waymark C, Hill AE. The Influence of Yeast Strain on Whisky New Make Spirit Aroma. Fermentation. 2021; 7(4):311. https://doi.org/10.3390/fermentation7040311
Chicago/Turabian StyleWaymark, Christopher, and Annie E. Hill. 2021. "The Influence of Yeast Strain on Whisky New Make Spirit Aroma" Fermentation 7, no. 4: 311. https://doi.org/10.3390/fermentation7040311
APA StyleWaymark, C., & Hill, A. E. (2021). The Influence of Yeast Strain on Whisky New Make Spirit Aroma. Fermentation, 7(4), 311. https://doi.org/10.3390/fermentation7040311