You are currently viewing a new version of our website. To view the old version click .

Advances in Artificial Intelligence in Healthcare

This special issue belongs to the section “Machine Learning and Artificial Intelligence in Diagnostics“.

Special Issue Information

Dear Colleagues,

In the era of precision medicine, digital radiology and AI-driven radiomics analysis are at the forefront of healthcare transformation. This convergence enables personalized preventive and therapeutic interventions tailored to individual patient characteristics, minimizing the costs and side effects. Medical imaging plays a pivotal role by facilitating screening, early diagnosis, response evaluation and recurrence assessment. Radiomics extracts mineable, high-dimensional data from routine medical images to create an 'imaging phenotype,' which categorizes disease severity, predicts therapy response and forecasts patient outcomes. The aim of this research proposal is to investigate and promote the integration of digital radiology and AI-driven radiomics for precision medicine in healthcare.

Recent advances in smart computer vision have spurred significant interest in AI applications within radiology and in healthcare. While some AI software applications have received clinical approval, numerous unexplored possibilities remain. AI-driven computer-assisted detection and diagnosis, utilizing deep neural networks, automates tasks such as image classification and object localization. AI also extends its potential to clinical decision support, protocol optimization and workflow improvement. This Special Issue explores various network architectures suitable for digitalization in radiology and will be able to advance healthcare based on AI. We seek the support and engagement of experts, researchers and authors in this exciting endeavor to advance healthcare through the fusion of radiology and AI.

The convergence of artificial intelligence and digital imaging offers a unique opportunity to shift from qualitative to quantitative data, fostering the development of clinical decision support systems. Radiomics and deep learning, as two prominent quantitative imaging techniques, promise efficiency, minimal invasiveness and high accuracy. Challenges such as model explainability, feature reproducibility and sensitivity to imaging variations must be addressed before clinical implementation. This narrative review assesses the status of quantitative medical image analysis, outlines challenges in the field, proposes a robust radiomics analysis framework and discusses future prospects. The Special Issue we aim to create will consolidate research findings on AI in digital radiology and inspire a new era of precision medicine and smart healthcare.

  • Radiology and AI-driven radiomics as the key for precise, cost-effective and personalized medicine;
  • Medical imaging as the pivot for screening, diagnosis and treatment monitoring in this convergence;
  • AI's role in digital radiology, particularly in computer-assisted detection and diagnosis;
  • The 'imaging phenotype' via radiomics for disease categorization and outcome prediction;
  • Deep convolutional neural networks for radiology tasks;
  • Seeking research community support to advance digital radiology and AI in healthcare;
  • Quantitative image analysis potential and Special Issue for precision medicine.

Prof. Dr. Kelvin K.L. Wong
Prof. Dr. Dhanjoo N. Ghista
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diagnostics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • artificial intelligence
  • AI-driven radiomics
  • healthcare
  • digital radiology
  • precision medicine

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Published Papers

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Diagnostics - ISSN 2075-4418