Innovative Materials in Dental Prosthetics

A special issue of Dentistry Journal (ISSN 2304-6767). This special issue belongs to the section "Dental Materials".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 1802

Special Issue Editor

Special Issue Information

Dear Colleagues,

The digital revolution has changed the world, and dentistry has followed the same direction. The materials used for prosthodontics are increasingly focusing on making rehabilitations with an aesthetic as well as functional impact. In addition, the cementation of prosthetic restorations is influenced by the materials available to us. The mechanical properties of dental materials have allowed innovative prosthetic materials to enter the market, which, through appropriate technological processes, can be used for such purposes. CAD-CAM ceramics, zirconia, and lithium disilicates offer multiple advantages such as high aesthetic potential, excellent optical properties, outstanding mechanical properties, reliable consistency in accuracy and precision due to fabrication technologies, and more cost-effective manufacturing times. These improvements have greatly expanded restorative options in tooth- and implant-supported prosthetics, as well as in implant-supported total dentures. Industry is working hard on innovative strategies to further improve the microstructural properties of these materials, along with the introduction of new manufacturing technologies. When developing materials in the biomedical field, one must always face difficulties related to the fact that, in this field of application, it is necessary to choose prosthetic materials that strictly adhere to high standards of safety and reliability. This Special Issue aims to collect original manuscripts related to new and innovative applications of innovative materials in total and fixed prosthetics in both dental and implant-supported prosthetics.

Dr. Gabriele Cervino
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Dentistry Journal is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • digital dentistry
  • prosthetic restorations
  • ceramics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3792 KiB  
Article
Influence of Cement Thickness, Dentine Thickness, and Intracoronal Depth on the Fracture Resistance of 3D-Printed Endocrowns: A Pilot In Vitro Study
by Osama Abuabboud, Adrian-George Marinescu, Mihai Paven, Izabella-Maria Kovacs, Luminita Maria Nica, Andrei-Bogdan Faur, Dan Ioan Stoia and Anca Jivănescu
Dent. J. 2025, 13(6), 263; https://doi.org/10.3390/dj13060263 - 12 Jun 2025
Viewed by 902
Abstract
Background/Objectives: Endodontically treated molars are structurally weakened due to internal tissue loss, increasing their risk of fracture. Endocrowns, developed as a conservative alternative to post–core systems, have gained popularity with the rise of digital dentistry, CAD/CAM workflows, and 3D-printed restorations. In this context, [...] Read more.
Background/Objectives: Endodontically treated molars are structurally weakened due to internal tissue loss, increasing their risk of fracture. Endocrowns, developed as a conservative alternative to post–core systems, have gained popularity with the rise of digital dentistry, CAD/CAM workflows, and 3D-printed restorations. In this context, the aim of the present pilot study was to investigate the influence of cement layer thickness, intracoronal depth, and dentine wall thickness on the fracture resistance of molars restored with 3D-printed endocrowns. Methods: Twelve extracted human molars were endodontically treated and restored with endocrowns fabricated from a 3D-printed resin material, SprintRay CrownTM (SprintRay Inc. Los Angeles, CA, USA), via masked stereolithography (MSLA) on a Prusa SL1 printer. Cementation was performed using RelyX Universal Resin Cement (3M, Maplewood, MN USA). Cone beam computed tomography (CBCT) was used to measure the dentine thickness and intracoronal depth before cementation and cement thickness after cementation. The fracture resistance was evaluated using a universal testing machine. For each variable (Td, Dp, Tc), the 12 specimens were divided into two groups (n = 6). Statistical analysis included Pearson correlation, a one-way ANOVA, and the non-parametric Mann–Whitney U test. Results: Within the limitations of this pilot in vitro study, cement thickness demonstrated a strong positive correlation with fracture resistance (r = 0.577) and was the only variable showing statistical significance in the ANOVA (F = 7.847, p = 0.019). In contrast, intracoronal depth and dentine wall thickness exhibited weaker and nonsignificant correlations. No significant mechanical advantage was observed from increasing the pulp chamber depth or peripheral dentine wall thickness. This result was further supported by nonparametric Mann–Whitney U testing (p = 0.015). Conclusions: Cement layer thickness is a key biomechanical factor influencing the fracture resistance of endocrown restorations. Preparation depth and dentine wall geometry appear to have a less direct impact. Full article
(This article belongs to the Special Issue Innovative Materials in Dental Prosthetics)
Show Figures

Graphical abstract

Back to TopTop