Advances in Nanomaterials and Nanocomposites for Catalytic Applications

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Hybrid and Composite Crystalline Materials".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 3316

Special Issue Editor


E-Mail Website
Guest Editor
Research Group of Analytical Chemistry, Center for Natural Sciences, University of Pannonia, P.O. Box 158, 8201 Veszprem, Hungary
Interests: material science/analytical chemistry; vibrational spectroscopy; FTIR; Raman; thermal analysis; clay minerals; surface modification; intercalation; exfoliation; nanostructures; nanohybrids and -composites; clay-based photocatalysts and adsorbents

Special Issue Information

Dear Colleagues,

With the continuous environmental pollution and energy shortage, the design of novel catalysts to achieve efficient energy conversion and utilization is receiving enormous interest. Nanotechnology provides novel strategies to synthesize functional catalysts; the engineered catalysts at the nanoscale enable enhanced activity, selectivity, efficiency, and stability.

There is an ongoing challenge to develop superior nanocatalysts in research on energy conversion/storage, environmental remediation, chemical synthesis, etc. We are currently organizing a Special Issue, “Advances in Nanomaterials and Nanocomposites for Catalytic Applications”. We invite the submission of original research, reviews, and perspective articles on themes including, but not limited to:

  • Synthesis and characterization of novel nanomaterials/nanocomposites with different morphologies, such as crystalline, etc.
  • Mechanistic studies of catalytic reactions on nanomaterials/nanocomposites;
  • Both experiments and theoretical calculations of catalysts and catalytic processes;
  • Applications of nanomaterials in various catalytic processes, such as energy conversion, environmental remediation, and chemical synthesis.

Dr. Balázs Zsirka
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • nanocomposites
  • nanocatalysts
  • catalytic performance
  • pollutant degradation
  • energy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 6695 KiB  
Article
Design and Application of Hollow Flower-like Trimetallic Nanocrystals in Real-Time Catalytic Process Analysis
by Yazhou Qin, Jiahao Teng, Han Zhang, Fan Li and Yingsheng He
Crystals 2025, 15(3), 246; https://doi.org/10.3390/cryst15030246 - 6 Mar 2025
Viewed by 474
Abstract
Hollow flower-like multi-metallic nanocrystals have attracted significant research attention due to their exceptional catalytic properties, which stem from their high surface area-to-volume ratio and abundant active sites. Nevertheless, conventional synthesis methods for noble metal nanocrystals typically involve complex procedures or require harsh reaction [...] Read more.
Hollow flower-like multi-metallic nanocrystals have attracted significant research attention due to their exceptional catalytic properties, which stem from their high surface area-to-volume ratio and abundant active sites. Nevertheless, conventional synthesis methods for noble metal nanocrystals typically involve complex procedures or require harsh reaction conditions. In this work, we developed a facile and environmentally benign strategy for fabricating hollow flower-shaped trimetallic nanocrystals at ambient temperature. Our approach employs AgCl nanocubes, derived from AgNO3 and HAuCl4, as self-sacrificing templates. Through ascorbic acid-mediated reduction of metal precursors, we successfully synthesized three distinct types of hollow flower-like nanocrystals: AuAgCu, AuAgPt, and AuAgPd. Comprehensive characterization confirmed the well-defined morphology and precise composition control of the as-prepared nanocrystals. The catalytic performance was systematically evaluated through in situ UV–vis spectroscopy monitoring of 4-nitrophenylthiophenol reduction, revealing the following activity trend: AuAgCu > AuAgPt > AuAgPd. This study not only provides a versatile platform for constructing sophisticated multi-metallic nanostructures but also offers valuable insights into the structure–activity relationship of complex catalysts. Full article
Show Figures

Figure 1

16 pages, 4793 KiB  
Article
Simulation of Surface Segregation in Nanoparticles of Pt-Pd Alloys
by Jose Brito Correia and Ana Isabel de Sá
Crystals 2025, 15(1), 53; https://doi.org/10.3390/cryst15010053 - 7 Jan 2025
Cited by 1 | Viewed by 783
Abstract
Platinum (Pt) and palladium (Pd) are crucial in hydrogen energy technologies, especially in fuel cells, due to their high catalytic activity and chemical stability. Pt-Pd nanoparticles, produced through various methods, enhance catalytic performance based on their size, shape, and composition. These nanocatalysts excel [...] Read more.
Platinum (Pt) and palladium (Pd) are crucial in hydrogen energy technologies, especially in fuel cells, due to their high catalytic activity and chemical stability. Pt-Pd nanoparticles, produced through various methods, enhance catalytic performance based on their size, shape, and composition. These nanocatalysts excel in direct methanol fuel cells (DMFCs) and direct ethanol fuel cells (DEFCs) by promoting alcohol oxidation and reducing CO poisoning. Pt-Pd catalysts are also being explored for their oxygen reduction reaction (ORR) on the cathodic side of fuel cells, showing higher activity and stability than pure platinum. Molecular dynamics (MD) simulations have been conducted to understand the structural and surface energy effects of PdPt nanoparticles, revealing phase separation and chemical ordering, which are critical for optimizing these catalysts. Pd migration to the surface layer in Pt-Pd alloys minimizes the overall potential energy through the formation of Pd surface monolayers and Pt-Pd bonds, leading to a lower surface energy for intermediate compositions compared to that of the pure elements. The potential energy, calculated from MD simulations, increases with a decreasing particle size due to surface creation, indicating higher reactivity for smaller particles. A general contraction of the average distance to the nearest neighbour atoms was determined for the top surface layers within the nanoparticles. This research highlights the significant impact of Pd segregation on the structural and surface energy properties of Pt-Pd nanoparticles. The formation of Pd monolayers and the resulting core–shell structures influence the catalytic activity and stability of these nanoparticles, with smaller particles exhibiting higher surface energy and reactivity. These findings provide insights into the design and optimization of Pt-Pd nanocatalysts for various applications. Full article
Show Figures

Figure 1

12 pages, 1667 KiB  
Article
Supported and Free-Standing Non-Noble Metal Nanoparticles and Their Catalytic Activity in Hydroconversion of Asphaltenes into Light Hydrocarbons
by Leonid Kustov, Andrei Tarasov, Kristina Kartavova, Valery Khabashesku, Olga Kirichenko, Gennady Kapustin, Alexander Kustov, Evgeny Abkhalimov and Boris Ershov
Crystals 2024, 14(11), 987; https://doi.org/10.3390/cryst14110987 - 16 Nov 2024
Viewed by 831
Abstract
The hydroconversion of asphaltenes into light hydrocarbons catalyzed by supported and free-standing non-noble metal nanoparticles was studied. The activity of Ni or Co immobilized on microspherical oxide carriers and Co nanoparticles dispersed in a hydrocarbon solution of asphaltene was found to be higher [...] Read more.
The hydroconversion of asphaltenes into light hydrocarbons catalyzed by supported and free-standing non-noble metal nanoparticles was studied. The activity of Ni or Co immobilized on microspherical oxide carriers and Co nanoparticles dispersed in a hydrocarbon solution of asphaltene was found to be higher than that of a comparative Pt-Pd/Al2O3 catalyst. The yield of light products (C5+) reached up to 91% on cobalt nanoparticles supported onto alumina microspheres. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 16865 KiB  
Review
Magnetic Nanocomposites Based on Iron Oxides as Catalysts of Oxidation Reactions
by Svetlana I. Pomogailo, Evgeny G. Chepaikin, Olga N. Bubelo, Rosa I. Jussupkaliyeva and Leonid M. Kustov
Crystals 2024, 14(12), 1031; https://doi.org/10.3390/cryst14121031 - 28 Nov 2024
Viewed by 907
Abstract
This review analyzes the use of magnetite-based catalysts in various oxidation reactions. It is shown that magnetite-based catalysts are the most promising candidates from the standpoint of easy separation from the reaction zone and reusability. Diverse examples of the use of magnetite-based composites [...] Read more.
This review analyzes the use of magnetite-based catalysts in various oxidation reactions. It is shown that magnetite-based catalysts are the most promising candidates from the standpoint of easy separation from the reaction zone and reusability. Diverse examples of the use of magnetite-based composites are discussed, including the following reactions: partial oxidation of methane to formaldehyde; the oxidation of cycloalkanes into alcohols and ketones; the oxidation of alkenes and alcohols with the major focus made on benzylic alcohol oxidation; oxidative cracking of alkenes; Fenton-type reactions with H2O2 as a benign oxidant; the removal of dyestuff in water (including wastewater by oxidation); reactions of sulfides and thiols; the oxidation of 5-hydroxymethylfurfural as a platform chemical to 2,5-diformylfuran; the oxidation of D-glucose to D-gluconic acid; and the electrocatalytic oxidation of methanol and ethanol. The most important and best-studied applications of magnetic nanoparticles in the oxidation reactions are believed to be the oxidation of diverse benzylic alcohols and D-glucose, and Fenton-like reactions aiming at the removal of S- and N-compounds from ware and fuels. Magnetic nanocomposites are determined as the materials meeting a range of criteria: (1) they should be magnetic, (2) they contain nanoparticles, and (3) they consist of two (or more) nanocomponents. The core–shell materials with magnetic nanoparticles used as a core or as decorating nanoparticles are discussed in the review. Three main types of magnetic nanocomposites can be distinguished: (1) the systems where the magnetic phase is active in the considered reaction, for instance, Fenton-like oxidation; (2) the systems containing active metal nanoparticles supported onto the magnetic nanoparticles; and (3) materials with magnetic nanoparticles as a core coated with one or two shells (porous or non-porous), with the magnetic nanoparticles being active or not in the title reaction. Magnetic nanoparticles exhibit a number of advantages compared with supported non-magnetic catalysts of oxidation reactions. The advantages include the possibility of separation from the reaction medium (5–10 times) without a significant loss of the activity, their non-toxicity, low cost, and availability, and the easy preparation of these materials. The drawbacks may include the leaching of active components; a decrease in saturation magnetization in comparison with the bulk magnetite; a limited accessibility of active sites due to diffusion through the shells; the complicated composition and structure of the nanomaterials; a decrease in the activity and specific surface area; and a limited number of magnetic compounds with acceptable characteristics. Nevertheless, the advantages of magnetic nanocatalysts stimulate their wide use in liquid-phase oxidation reactions, which will be discussed in the review. Future perspectives on the use of magnetic composites are considered. Full article
Show Figures

Figure 1

Back to TopTop