Innovations in Magnetic Composites: Synthesis to Application

A special issue of Crystals (ISSN 2073-4352).

Deadline for manuscript submissions: 15 November 2025 | Viewed by 568

Special Issue Editor


E-Mail Website
Guest Editor
National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat Str. 67-103, RO-400293 Cluj-Napoca, Romania
Interests: materials chemistry; electrochemistry; synthesis of magnetic nanocomposites with controlled shape and size; synthesis of magnetic clusters with specific properties; synthesis of polymeric composite materials

Special Issue Information

Dear Colleagues,

Magnetic composite materials are at the cutting edge of scientific and technological innovation, offering unique opportunities in a wide range of fields, from electronics and energy storage to biomedical engineering and environmental remediation. This Special Issue aims to present the latest advances in the design, synthesis, characterization, and real-world application of magnetic composites.

We invite contributions highlighting novel fabrication techniques, advanced theoretical modelling, multifunctional properties, and application-oriented research. The focus will be on interdisciplinary approaches that bridge the gap between fundamental science and practical implementation. Topics of interest include, but are not limited to, soft and hard magnetic composites, hybrid nanostructures, magnetoresponsive systems, and their integration into smart devices and materials.

By bringing together diverse perspectives and latest developments, this Issue aims to serve as a comprehensive reference for researchers, engineers, and industry professionals investing in the future of magnetic composite materials.

Dr. Izabella Crăciunescu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • magnetic nanomaterials
  • composites
  • hybrid nanostructures
  • magnetoresponsive systems
  • applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1991 KiB  
Article
Chemical Manipulation of the Collective Superspin Dynamics in Heat-Generating Superparamagnetic Fluids: An AC-Susceptibility Study
by Cristian E. Botez and Alex D. Price
Crystals 2025, 15(7), 631; https://doi.org/10.3390/cryst15070631 - 9 Jul 2025
Viewed by 175
Abstract
We use Co doping to alter the magnetic relaxation dynamics in superparamagnetic nanofluids made of 18 nm average diameter Fe3O4 nanoparticles immersed in Isopar M. Ac-susceptibility data recorded at different frequencies and temperatures, χ″vs. T|f, reveals a major [...] Read more.
We use Co doping to alter the magnetic relaxation dynamics in superparamagnetic nanofluids made of 18 nm average diameter Fe3O4 nanoparticles immersed in Isopar M. Ac-susceptibility data recorded at different frequencies and temperatures, χ″vs. T|f, reveals a major (~100 K) increase in the superspin blocking temperature of the Co0.2Fe2.8O4-based fluid (CFO) compared to its Fe3O4 counterpart (FO). We ascribe this behavior to the strengthening of the interparticle magnetic dipole interactions upon Co doping, as demonstrated by the relative χ″-peak temperature variation per frequency decade Φ=TT·log(f), which decreases from Φ~0.15 in FO to Φ~0.025 in CFO. In addition, χ″vs. T|f datasets from the CFO fluid reveal two magnetic events at temperatures Tp1 = 240 K and Tp2 = 275 K, both above the fluid’s freezing point (TF = 197 K). We demonstrate that the physical rotation of the nanoparticles within the fluid, the Brown mechanism, is entirely responsible for the collective superspin relaxation observed at Tp1, whereas the Néel mechanism, the superspin flip across an energy barrier within the particle, is dominant at Tp2. We confirm this finding through fits of models that describe the temperature dependence of the relaxation time via the two mechanisms: τB(T)=3η0VHkBTexpEkBTT0 and τNT=τ0expEBkBTT0. The best fits yield γ0=3η0VHkB = 1.5 × 10−8 s·K, E′/kB = 7 03 K, and T0′ = 201 K for the Brown relaxation, and EB/kB = 2818 K and T0 = 143 K for the Néel relaxation. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

21 pages, 5673 KiB  
Article
Functionalized Magnetic Nanomaterial Based on SiO2/Ca(OH)2-Coated Clusters Decorated with Silver Nanoparticles for Dental Applications
by Izabell Crăciunescu, George Marian Ispas, Alexandra Ciorîta and Rodica Paula Turcu
Crystals 2025, 15(7), 615; https://doi.org/10.3390/cryst15070615 - 30 Jun 2025
Cited by 1 | Viewed by 248
Abstract
In this study, an innovative dental functionalized magnetic nanomaterial was developed by incorporating hydrophilic magnetic clusters as an alternative to conventional isolated magnetic nanoparticles, introducing a novel structural and functional concept in dental applications. The ~100 nm magnetic clusters—composed of densely packed 7 [...] Read more.
In this study, an innovative dental functionalized magnetic nanomaterial was developed by incorporating hydrophilic magnetic clusters as an alternative to conventional isolated magnetic nanoparticles, introducing a novel structural and functional concept in dental applications. The ~100 nm magnetic clusters—composed of densely packed 7 nm Fe3O4 nanoparticles—were sequentially coated with a silica (SiO2) layer (3–5 nm) to improve chemical and mechanical stability, followed by an outer calcium hydroxide [Ca(OH)2] layer to enhance bioactivity and optical integration. This bilayer architecture enables magnetic field-assisted positioning and improved dispersion within dental resin matrices. Silver nanoparticles were incorporated to enhance antimicrobial activity and reduce biofilm formation. The synthesis process was environmentally friendly and scalable. Comprehensive physicochemical characterization confirmed the material’s functional performance. Saturation magnetization decreased progressively with surface functionalization, from 62 to 14 emu/g, while the zeta potential became increasingly negative (from −2.42 to −22.5 mV), supporting its ability to promote apatite nucleation. The thermal conductivity (0.527 W/m·K) closely matched that of human dentin (0.44 W/m·K), and the colorimetric analysis showed improved brightness (ΔL = 5.3) and good color compatibility (ΔE = 11.76). These results indicate that the functionalized magnetic nanomaterial meets essential criteria for restorative use and holds strong potential for future clinical applications. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

Back to TopTop