Advances of Nonlinear Optical Materials

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Inorganic Crystalline Materials".

Deadline for manuscript submissions: closed (31 October 2023) | Viewed by 4428

Special Issue Editors

Institute of Theoretical and Computational Materials, College of Chemistry and Molecular Engineering, Peking University, Beijing 100084, China
Interests: first-principles calculation; crystal structures; nonlinear optics; phosphates; low-dimensional metal halides; self-trapped exciton

E-Mail Website
Guest Editor
School of Physics, University of Electronic Science and Technology of China, Chengdu 610056, China
Interests: computational materials and physics; excited-state MD; light-matter interaction; optoelectronic materials and devices; optical crystals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nonlinear optical (NLO) materials, as the heart of frequency conversion systems, are used to convert coherent light to other desirable wavelengths, ranging from deep-ultraviolet (DUV) to infrared (IR). The conversion occurs via a number of processes, such as second-harmonic generation (SHG) and difference-frequency generation. NLO materials have played an increasing role in a variety of areas, such as information storage, medical devices, laser systems, detectors, and photolithography. Ideally, SHG materials should satisfy several fundamental requirements, including proper phase matching, high NLO coefficients, stability in various chemical environments, a high laser-induced damage threshold (LIDT), relevant transparent windows in applied wavelengths, and the ability to be grown as large, crack-free single crystals. Therefore, exploring new NLO fundamental modules, achieving a good performance balance, and identifying novel NLO crystal candidates are topics of interest in the field of NLO materials.

In this Special Issue, we will collect and review the latest developments in experimental and theoretical studies of new NLO materials, focusing on their synthesis methods, design strategies, theoretical mechanisms, linear and nonlinear optical properties, etc. We believe that this Special Issue will shed light on the further exploration and design of high-performance NLO materials.

Dr. Lin Xiong
Prof. Dr. Liujiang Zhou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nonlinear optical material
  • birefringence
  • second harmonic generation
  • noncentrosymmetric
  • first-principles calculation
  • hydrothermal synthesis

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 3870 KiB  
Article
Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals
by Svetlana A. Bereznaya, Ruslan A. Redkin, Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su and Sergey Yu. Sarkisov
Crystals 2023, 13(11), 1562; https://doi.org/10.3390/cryst13111562 - 01 Nov 2023
Viewed by 1139
Abstract
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands [...] Read more.
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands were attributed to the defect states induced by Ga vacancies in two charge states, having the energy positions at 0.23 and 0.61 eV above the valence band maximum at T = 300 K. The optical pump-terahertz probe technique (OPTP) was employed to study the dark and photoexcited terahertz conductivity and charge carrier recombination dynamics at two-photon excitation of as-grown and 9 MeV electron-irradiated GaSe crystals. The measured values of the differential terahertz transmission at a specified photoexcitation condition were used to extract the terahertz charge carrier mobilities. The determined terahertz charge carrier mobility values were ~46 cm2/V·s and ~14 cm2/V·s for as-grown and heavily electron-irradiated GaSe crystals, respectively. These are quite close to the values determined from the Lorentz–Drude–Smith fitting of the measured dielectric constant spectra. The photo-injection-level-dependent charge carrier lifetimes were determined from the measured OPTP data, bearing in mind the model injection-level dependencies of the recombination rates governed by interband and trap-assisted Auger recombination, bulk and surface Shockley–Read–Hall (SRH) recombination and interband radiative transitions in the limit of a high injection level. It was found that GaSe possesses a long charge carrier lifetime (a~1.9 × 10−6 ps−1, b~2.7 × 10−21 cm3ps−1 and c~1.3 × 10−37 cm6ps−1), i.e., τ~0.53 μs in the limit of a relatively low injection, when the contribution from SRH recombination is dominant. The electron irradiation of as-grown GaSe crystals reduced the charge carrier lifetime at a high injection level due to Auger recombination through radiation-induced defects. It was found that the terahertz spectra of the dielectric constants of as-grown and electron-irradiated GaSe crystals can be fitted with acceptable accuracy using the Lorentz model with the Drude–Smith term accounting for the free-carrier conductivity. Full article
(This article belongs to the Special Issue Advances of Nonlinear Optical Materials)
Show Figures

Figure 1

18 pages, 3834 KiB  
Article
Novel Non-Centrosymmetric NdSr4O(BO3)3 Borate and Nd(Ca1−xSrx)4O(BO3)3 Solid Solutions: Preparation, Crystal Structures, Thermal Expansion and Optical Properties
by Rimma Bubnova, Valentina Yukhno, Artem Yurev, Alexey Povolotskiy, Maria Krzhizhanovskaya, Sergey Volkov, Valery Ugolkov and Stanislav Filatov
Crystals 2023, 13(9), 1395; https://doi.org/10.3390/cryst13091395 - 19 Sep 2023
Viewed by 705
Abstract
A novel non-centrosymmetric NdSr4O(BO3)3 borate and solid solutions of Nd(Ca1−xSrx)4O(BO3)3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0) were synthesized by solid-state reactions as well [...] Read more.
A novel non-centrosymmetric NdSr4O(BO3)3 borate and solid solutions of Nd(Ca1−xSrx)4O(BO3)3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0) were synthesized by solid-state reactions as well as crystallization from a melt. The crystal structures of the Nd(Ca1−xSrx)4O(BO3)3 solid solutions with x = 0.2, 0.5 and 1.0 were determined from single crystal X-ray diffraction data and refined in the monoclinic space group Cm to Robs = 0.028, 0.034 and 0.028, respectively. The thermal expansion of the samples with x = 0, 0.2 and 0.5 was investigated using powder high-temperature X-ray diffraction in the temperature range of 25–1000 °C. A similarity of the thermal and compositional (Ca-Sr substitution) deformations of Nd(Ca1−xSrx)4O(BO3)3 solid solutions is revealed: Heating of Nd(Ca0.5Sr0.5)4O(BO3)3 by 1 °C leads to the same deformations of the crystal structure as increasing the amount of Sr atoms in Nd(Ca0.5Sr0.5)4O(BO3)3 by 0.26 at% Sr. The SHG signal of the series of Nd(Ca1−xSrx)4O(BO3)3 solid solutions has a maximum at approximately x = 0.2. Full article
(This article belongs to the Special Issue Advances of Nonlinear Optical Materials)
Show Figures

Figure 1

15 pages, 9185 KiB  
Article
Electronic Properties, Linear and Nonlinear Performance of KAgCh (Ch = S, Se) Compounds: A First-Principles Study
by Taieb Seddik, Debidatta Behera, Mohammed Batouche, Walid Ouerghui, Houda Ben Abdallah, Ram Krishna Sarkar, Mostafa M. Salah, Ahmed Shaker and Sanat Kumar Mukherjee
Crystals 2023, 13(5), 726; https://doi.org/10.3390/cryst13050726 - 25 Apr 2023
Cited by 9 | Viewed by 1237
Abstract
In the current study, the peculiar nonlinear optical (NLO) properties of KAgCh (Ch = S, Se) and their structural, electronic, and thermodynamic properties are computed utilizing the FP-LAPW (full-potential linearized augmented plane wave) approach as embedded in Wein2K code. The Perdew–Burke–Ernzerh [...] Read more.
In the current study, the peculiar nonlinear optical (NLO) properties of KAgCh (Ch = S, Se) and their structural, electronic, and thermodynamic properties are computed utilizing the FP-LAPW (full-potential linearized augmented plane wave) approach as embedded in Wein2K code. The Perdew–Burke–Ernzerh of generalized gradient approximation (PBE-GGA) was considered for the structural optimization. The computed bandgaps are found to be 2.57 and 2.39 eV for KAgS and KAgSe, respectively. Besides the structural and electronic properties, we also computed the refractive indices n(ω), surface energy loss function (SELF), and nonlinear optical susceptibilities. The estimated refractive indices, energy band gap, and their frequency dependence for the investigated KAgCh (Ch = S, Se) compounds, along with the NLO coefficients, are found to be in good agreement with the earlier reports. These current findings suggest that KAgCh (Ch = S, Se) can be recommended for nonlinear optical applications in the near-infrared spectrum. Full article
(This article belongs to the Special Issue Advances of Nonlinear Optical Materials)
Show Figures

Figure 1

Review

Jump to: Research

12 pages, 1856 KiB  
Review
Nitride Wide-Bandgap Semiconductors for UV Nonlinear Optics
by Shihang Li and Lei Kang
Crystals 2023, 13(11), 1536; https://doi.org/10.3390/cryst13111536 - 26 Oct 2023
Cited by 1 | Viewed by 1036
Abstract
Nitride wide-bandgap semiconductors possess a wide tunable energy bandgap and abundant coordination anionic groups. This suggests their potential to display nonlinear optical (NLO) properties in the UV wavelength spectrum. This paper reports recent progress and material discoveries in exploring UV NLO structures using [...] Read more.
Nitride wide-bandgap semiconductors possess a wide tunable energy bandgap and abundant coordination anionic groups. This suggests their potential to display nonlinear optical (NLO) properties in the UV wavelength spectrum. This paper reports recent progress and material discoveries in exploring UV NLO structures using nitrides. The study emphasizes their underlying structure–property correlations in order to provide a summary of the potential performance and application value of important nitride NLO crystals. Additionally, the text underscores the benefits of nitrides in terms of optical transparency, second-harmonic-generation effects, and the birefringent phase matching output wavelength limits, while addressing current issues in terms of theoretical outlook and experimental exploration. Full article
(This article belongs to the Special Issue Advances of Nonlinear Optical Materials)
Show Figures

Figure 1

Back to TopTop