Crystalline Materials for Radiation Detection: A New Perspective (2nd Edition)

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Inorganic Crystalline Materials".

Deadline for manuscript submissions: 10 October 2025 | Viewed by 623

Special Issue Editor


E-Mail Website
Guest Editor
Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
Interests: semiconductor crystals; defects; electronic devices; SiC
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Developing efficient and environmentally friendly technologies for radiation detection is challenging. The recent progress in crystal growth, theoretical modelling, understanding of radiation-induced defects, and radiation hardness has offered new perspectives for radiation detection and crystalline materials, specifically wide-bandgap semiconductor crystals.

This Special Issue of Crystals is dedicated to all aspects related to the growth, characterization, and application of crystalline materials for radiation detection, to provide an overview of current issues of interest and future perspectives.

Researchers working in this field are invited to contribute papers on potential topics of interest, including but not limited to the following:

  • Growth and characterization techniques of crystalline materials;
  • Radiation detection;
  • Wide-bandgap semiconductors;
  • Radiation-induced defects;
  • Modelling, first-principle calculations, etc.;
  • Deep-level transient spectroscopy, electron paramagnetic resonance, etc.

Dr. Ivana Capan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • crystalline materials
  • semiconductor devices
  • radiation detectors
  • radiation induced defects
  • wide-band gap semiconductors (GaN, SiC, etc.)
  • modeling, first-principles calculations
  • radiation hardness

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 6808 KiB  
Article
Single-Particle Radiation Sensitivity of Ultrawide-Bandgap Semiconductors to Terrestrial Atmospheric Neutrons
by Daniela Munteanu and Jean-Luc Autran
Crystals 2025, 15(2), 186; https://doi.org/10.3390/cryst15020186 - 15 Feb 2025
Viewed by 436
Abstract
Semiconductors characterized by ultrawide bandgaps (UWBGs), exceeding the SiC bandgap of 3.2 eV and the GaN bandgap of 3.4 eV, are currently under focus for applications in high-power and radio-frequency (RF) electronics, as well as in deep-ultraviolet optoelectronics and extreme environmental conditions. These [...] Read more.
Semiconductors characterized by ultrawide bandgaps (UWBGs), exceeding the SiC bandgap of 3.2 eV and the GaN bandgap of 3.4 eV, are currently under focus for applications in high-power and radio-frequency (RF) electronics, as well as in deep-ultraviolet optoelectronics and extreme environmental conditions. These semiconductors offer numerous advantages, such as a high breakdown field, exceptional thermal stability, and minimized power losses. This study used numerical simulation to investigate, at the material level, the single-particle radiation response of various UWBG semiconductors, such as aluminum gallium nitride alloys (AlxGa1−xN), diamond, and β-phase gallium oxide (β-Ga2O3), when exposed to ground-level neutrons. Through comprehensive Geant4 simulations covering the entire spectrum of atmospheric neutrons at sea level, this study provides an accurate comparison of the neutron radiation responses of these UWBG semiconductors focusing on the interaction processes, the number and nature of secondary ionizing products, their energy distributions, and the production of electron–hole pairs at the origin of single-event effects (SEEs) in microelectronics devices. Full article
Show Figures

Graphical abstract

Back to TopTop