A 10 Years Journey: Chemical, Physical, and Biological Properties and Applications of Crystals

A special issue of Crystals (ISSN 2073-4352).

Deadline for manuscript submissions: closed (31 January 2021) | Viewed by 316359

Special Issue Editors


E-Mail Website
Guest Editor
Physical Chemistry, Universität Konstanz, 78457 Konstanz, Germany
Interests: nucleation; nanoparticle self organization; non classical crystallization; mesocrystals; biomineralization; nanoparticle analysis by fractionating methods
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Interests: protein crystals; biocrystals; crystal growth; protein crystallography; crystal chemistry; biomineralization; biomimetics; biological macromolecules
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Ohio Eminent Scholar and Professor of Physics, Department of Physics, Case Western Reserve University, Cleveland, OH 44106-7079, USA
Interests: liquid crystals and complex fluids (electric and magnetic field effects, interfaces, phase transitions, colloidal inclusions); fluid interface instabilities; microgravity
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Spain
Interests: hydrogen bond; lewis acid–Lewis base interactions; atoms in molecules theory; ab initio calculations
Special Issues, Collections and Topics in MDPI journals

grade E-Mail Website
Guest Editor
ISEM/AIIM, University of Wollongong, Wollongong, NSW 2500, Australia
Interests: piezoelectricity; ferroelectricity; crystals; ceramics; transducers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Crystals are a very important class of structured materials both from a scientific and technological viewpoint and have fascinated humankind from its beginning. This is the topic the journal Crystals has focused on for the last 10 years. To mark this anniversary, a Special Issue edited by the editor in chief and all section editors is inviting all editorial board members as well as prominent scientists in the field for contributions. The coverage of topics of this Special Issue is as broad as that of the journal, ranging from nucleation, growth, processing, and characterization of crystalline and liquid crystalline materials to the mechanical, chemical, electronic, magnetic, and optical properties of crystals as well as the diverse applications of (nano)crystalline materials. In addition, all modern methods for the characterization of crystal nucleation and growth are of interest, including high resolution characterization techniques such as synchrotron radiation or X-ray free electron laser-based techniques.

We especially invite contributions from the four major sections of crystals, namely, liquid crystals, crystalline materials, crystal engineering, and biomolecular crystals. However, we would also like to reflect the broad field of crystalline materials in this Special Issue, and contributions in the field of all abovementioned topics are welcome, as well as those from common applications.

We therefore very much look forward to your valued contributions to make this Special Issue a unique resource for future researchers from the exciting field of crystals.

Prof. Dr. Helmut Cölfen
Prof. Abel Moreno
Prof. Dr. Charles Rosenblatt
Prof. Dr. Sławomir J. Grabowski
Prof. Dr. Shujun Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • crystal
  • liquid crystal
  • photonic crystals
  • crystals of biological molecules
  • biominerals
  • crystal analysis
  • crystal modeling
  • cocrystals
  • mesocrystals
  • nucleation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (79 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 167 KiB  
Editorial
Nonclassical Nucleation and Crystallization
by Helmut Cölfen
Crystals 2020, 10(2), 61; https://doi.org/10.3390/cryst10020061 - 23 Jan 2020
Cited by 15 | Viewed by 4753
Abstract
Nucleation and growth are of uttermost importance for crystallization since they determine the structure, shape, and properties of a crystal [...] Full article

Research

Jump to: Editorial, Review

14 pages, 4009 KiB  
Article
Novel NiMgOH-rGO-Based Nanostructured Hybrids for Electrochemical Energy Storage Supercapacitor Applications: Effect of Reducing Agents
by Konda Shireesha, Thida Rakesh Kumar, Tumarada Rajani, Chidurala Shilpa Chakra, Murikinati Mamatha Kumari, Velpula Divya and Kakarla Raghava Reddy
Crystals 2021, 11(9), 1144; https://doi.org/10.3390/cryst11091144 - 19 Sep 2021
Cited by 12 | Viewed by 2673
Abstract
This paper describes the synthesis and characterization of NiMgOH-rGO nanocomposites made using a chemical co-precipitation technique with various reducing agents (e.g., NaOH and NH4OH) and reduced graphene oxide at 0.5, 1, and 1.5 percent by weight. UV-visible spectroscopy, Fourier-transform infrared spectroscopy, [...] Read more.
This paper describes the synthesis and characterization of NiMgOH-rGO nanocomposites made using a chemical co-precipitation technique with various reducing agents (e.g., NaOH and NH4OH) and reduced graphene oxide at 0.5, 1, and 1.5 percent by weight. UV-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, a particle size analyzer, and cyclic voltammetry were used to characterize the composite materials. The formation of the NiMgOH-rGO nanocomposite with crystallite sizes in the range of 10–40 nm was inferred by X-ray diffraction patterns of materials, which suggested interlayers of Ni(OH)2 and Mg(OH)2. The interactions between the molecules were detected using Fourier-transform infrared spectroscopy, while optical properties were studied using UV-visible spectroscopy. A uniform average particle size distribution in the range of 1–100 nm was confirmed by the particle size analyzer. Using cyclic voltammetry and galvanostatic charge/discharge measurements in a 6 M KOH solution, the electrochemical execution of NiMgOH-rGO nanocomposites was investigated. At a 1 A/g current density, the NiMgOH-rGO nanocomposites prepared with NH4OH as a reducing agent had a higher specific capacitance of 1977 F/g. The electrochemical studies confirmed that combining rGO with NiMgOH increased conductivity. Full article
Show Figures

Graphical abstract

14 pages, 2382 KiB  
Article
Structures of a Phosphoryl Derivative of 4-Allyl-2,4-dihydro-3H-1,2,4-triazole-3-thione: An Illustrative Example of Conformational Polymorphism
by Ivan V. Fedyanin, Aida I. Samigullina, Ivan A. Krutov, Elena L. Gavrilova and Dmitry V. Zakharychev
Crystals 2021, 11(9), 1126; https://doi.org/10.3390/cryst11091126 - 15 Sep 2021
Cited by 4 | Viewed by 2042
Abstract
Two polymorphic forms of a conformationally flexible molecule, 5-[(Diphenylphosphoryl)methyl]-4-(prop-2-en-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, were obtained by crystallization and characterized by X-ray diffraction analysis and differential scanning calorimetry. The relative stability of polymorphic forms was estimated with DFT calculations of crystal structures and isolated molecules. It turns out, [...] Read more.
Two polymorphic forms of a conformationally flexible molecule, 5-[(Diphenylphosphoryl)methyl]-4-(prop-2-en-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, were obtained by crystallization and characterized by X-ray diffraction analysis and differential scanning calorimetry. The relative stability of polymorphic forms was estimated with DFT calculations of crystal structures and isolated molecules. It turns out, that in the first more dense polymorph with higher cohesion energy and crystal lattice energy, the molecule adopts an energetically unfavorable conformation, and forms dimers with lower H-bond strength, as compared to the second polymorph. On the other hand, in the second polymorph, the molecule adopts almost the lowest-energy conformation and forms infinite chains via strong H-bonds. The first form that seems to be more thermodynamically stable at room temperature transforms into the second form via two endothermic phase transitions; the apparent irreversibility of the transition is due to high energy difference between the molecular conformations in crystals. Full article
Show Figures

Graphical abstract

16 pages, 5183 KiB  
Article
Fracture Behavior of Single-Crystal Sapphire in Different Crystal Orientations
by Shizhan Huang, Jiaming Lin, Ningchang Wang, Bicheng Guo, Feng Jiang, Qiuling Wen and Xizhao Lu
Crystals 2021, 11(8), 930; https://doi.org/10.3390/cryst11080930 - 11 Aug 2021
Cited by 13 | Viewed by 5922
Abstract
In order to study the anisotropy of fracture toughness and fracture mechanism of single-crystal sapphire, the three-point bending tests and the single-edge V-notch beam (SEVNB) were used to test the fracture toughness of A-plane, C-plane, and M-plane sapphire, which are widely used in [...] Read more.
In order to study the anisotropy of fracture toughness and fracture mechanism of single-crystal sapphire, the three-point bending tests and the single-edge V-notch beam (SEVNB) were used to test the fracture toughness of A-plane, C-plane, and M-plane sapphire, which are widely used in the semiconductor, aerospace, and other high-tech fields. Fracture morphology was investigated by a scanning electron microscope and three-dimensional video microscopy. The fracture toughness and fracture morphology of different crystal planes of sapphire showed obvious anisotropy and were related to the loading surfaces. C-plane sapphire showed the maximal fracture toughness of 4.24 MPa·m1/2, and fracture toughness decreases in the order of C-plane, M-plane, and A-plane. The surface roughness is related to the dissipation of fracture energy. The surface roughness of the fracture surface is in the same order as C-plane > M-plane > A-plane. The fracture behavior and morphology of experiments were consistent with the theoretical analysis. C-plane sapphire cleavages along the R-plane with an angle of 57.6 degrees and the rhombohedral twin were activated. M-plane and A-plane sapphire cleavages along their cross-section. Full article
Show Figures

Figure 1

12 pages, 3271 KiB  
Article
Spin-Phonon Coupling in A2BMnO6 (A = La, Pr, Nd, Sm, Gd; B = Co, Ni) Double-Perovskite Thin Films: Impact of the A-Site Cation Radius
by Christoph Meyer, Philipp Ksoll, Vladimir Roddatis and Vasily Moshnyaga
Crystals 2021, 11(7), 747; https://doi.org/10.3390/cryst11070747 - 26 Jun 2021
Cited by 3 | Viewed by 1846
Abstract
Two series of B-site ordered, double-perovskite A2CoMnO6 and A2NiMnO6 (A = La, Pr, Nd, Sm, Gd) epitaxial films with thickness d ~ 100 nm were grown on SrTiO3(111) substrates via metalorganic aerosol deposition. Polarization and [...] Read more.
Two series of B-site ordered, double-perovskite A2CoMnO6 and A2NiMnO6 (A = La, Pr, Nd, Sm, Gd) epitaxial films with thickness d ~ 100 nm were grown on SrTiO3(111) substrates via metalorganic aerosol deposition. Polarization and temperature-dependent Raman spectroscopy were carried out in order to determine the spin-phonon coupling constant, λ, and the impact of the A-site cation radius on the phonon properties. The reduction of the A-site cation radius from La3+ down to Gd3+ systematically shifts the Raman modes to lower wavenumbers, and decreases the magnetization-induced softening of the Ag breathing mode, described by the spin-phonon coupling constant, λ, which changes from λ = 1.42 cm−1 (La2CoMnO6) and λ = 1.53 cm−1 (La2NiMnO6) down to λ = 0.58 cm−1 (Gd2CoMnO6) and λ = 0.44 cm−1 (Gd2NiMnO6). A similar effect of the A-cation radius was established for the c-lattice parameter and Curie temperature, TC, in this series of double-perovskite films. Our observations directly demonstrate a strong impact of the lattice structure on the ferromagnetic superexchange interaction in double perovskites. Moreover, the A2CoMnO6 and A2NiMnO6 series exhibit very similar behavior of spin-phonon coupling due to the only moderate difference of Co2+ and Ni2+ cation size. Full article
Show Figures

Figure 1

21 pages, 3210 KiB  
Article
Start-Up of a Solid Oxide Fuel Cell System with a View to Materials Science-Related Aspects, Control and Thermo-Mechanical Stresses
by Konrad W. Eichhorn Colombo and Vladislav V. Kharton
Crystals 2021, 11(7), 732; https://doi.org/10.3390/cryst11070732 - 24 Jun 2021
Cited by 5 | Viewed by 3010
Abstract
The start-up of a solid oxide fuel cell (SOFC) is investigated by means of numerical simulation with a view to material and operational constraints on a component and system level, as well as thermo-mechanical stresses. The applied multi-physics modeling approach couples thermal-, electrochemical, [...] Read more.
The start-up of a solid oxide fuel cell (SOFC) is investigated by means of numerical simulation with a view to material and operational constraints on a component and system level, as well as thermo-mechanical stresses. The applied multi-physics modeling approach couples thermal-, electrochemical, chemical-, and thermo-mechanical phenomena. In addition to constraints, emphasis is given to degrees of freedom with respect to manipulated and controlled variables of the system. Proper ramping during the start-up procedure keeps critical parameter values within a safe regime. Of particular interest are gradient in terms of temperature and chemical concentrations. Nevertheless, simulations show that thermo-mechanical stresses are relatively high during the initial start-up phase, the system is, thus, more susceptible to failure. The combination of multi-physics modeling in conjunction with practical control aspects for start-up of an SOFC, which is presented in this paper, is important for applications. Full article
Show Figures

Figure 1

9 pages, 3367 KiB  
Article
Synthesis and Optical Characterizations of Yb3+: CaxSr1−xF2 Transparent Ceramics
by Hongran Ling, Bingchu Mei, Weiwei Li, Yu Yang, Yongqiang Zhang and Xinwen Liu
Crystals 2021, 11(6), 652; https://doi.org/10.3390/cryst11060652 - 8 Jun 2021
Viewed by 1875
Abstract
In this study, 3 at.% Yb3+: CaxSr1−xF2 nanopowders were synthesized via the chemical co-precipitation method. Highly transparent 3 at.% Yb3+: CaxSr1−xF2 ceramics with various CaF2 concentrations were fabricated [...] Read more.
In this study, 3 at.% Yb3+: CaxSr1−xF2 nanopowders were synthesized via the chemical co-precipitation method. Highly transparent 3 at.% Yb3+: CaxSr1−xF2 ceramics with various CaF2 concentrations were fabricated by hot-pressed sintering. The 3 at.% Yb3+: CaxSr1−xF2 nanopowders exhibited a spherical shape with slight agglomeration, and their particle size ranged from 26 nm to 36 nm. With an increase of the CaF2 concentration, the peak shape changed significantly and the width of the emission band increased inhomogeneously. The minimal fluorescence lifetime at the wavelength of 1011 nm of 3 at.% Yb3+: CaxSr1−xF2 transparent ceramics with various CaF2 concentrations was higher than 3.25 ms, which was longer than that of the 3 at.% Yb3+: CaF2 (2.6 ms) and the 3 at.% Yb3+: SrF2 (3.22 ms) reported in previous literature. The results indicate that incorporating Ca2+ ions into the SrF2 is an effective method to modulate the optical properties of transparent ceramics. Full article
Show Figures

Figure 1

23 pages, 5241 KiB  
Article
Bulk and Surface Conformations in Solid-State Lovastatin: Spectroscopic and Molecular Dynamics Studies
by Anuradha R. Pallipurath, Jonathan M. Skelton, Andrew Britton, Elizabeth A. Willneff and Sven L. M. Schroeder
Crystals 2021, 11(5), 509; https://doi.org/10.3390/cryst11050509 - 4 May 2021
Cited by 1 | Viewed by 2401
Abstract
Conformational flexibility in molecules can give rise to a range of functional group terminations at crystal surfaces and dynamic disorder in the bulk. In this work, we explore the conformational behavior of the drug molecule lovastatin in the crystallographically disordered solid and at [...] Read more.
Conformational flexibility in molecules can give rise to a range of functional group terminations at crystal surfaces and dynamic disorder in the bulk. In this work, we explore the conformational behavior of the drug molecule lovastatin in the crystallographically disordered solid and at crystal surfaces through a combination of computational modeling and spectroscopy. Gas-phase and periodic quantum-chemical calculations are used to study the potential energy surface associated with rotatable bonds to examine the disorder in bulk. These calculations are combined with vibrational and X-ray photoelectron spectroscopy measurements to obtain insight into the conformations in bulk and at the surface. Our MD simulations show that the bulk disorder is driven by cooperative motion of the butyl group on the S-butanoate moiety along one crystallographic direction beyond a unit cell. The calculations show that the O-H group can rotate relatively freely between two low-energy conformers in the gas phase but is locked in position by intermolecular H-bonding interactions in the bulk crystal, and we find tentative spectroscopic evidence for the second conformer being present at the surface. We also comment on the relative utility of these different techniques for studying molecular conformation in bulk and at surfaces and highlight possible areas for future developments. Full article
Show Figures

Figure 1

16 pages, 3373 KiB  
Article
Cocrystals Based on 4,4’-bipyridine: Influence of Crystal Packing on Melting Point
by Daniel Ejarque, Teresa Calvet, Mercè Font-Bardia and Josefina Pons
Crystals 2021, 11(2), 191; https://doi.org/10.3390/cryst11020191 - 16 Feb 2021
Cited by 13 | Viewed by 3739
Abstract
The reactions of piperonylic acid (HPip) and cinnamic acid (HCinn) with 4,4’-bipyridine (4,4’-bipy) have been assayed using the same synthetic methodology, yielding two binary cocrystals with different acid:4,4’-bipy molar ratios, (HPip)(4,4’-bipy) (1) and (HCinn)2(4,4’-bipy) (2). The melting [...] Read more.
The reactions of piperonylic acid (HPip) and cinnamic acid (HCinn) with 4,4’-bipyridine (4,4’-bipy) have been assayed using the same synthetic methodology, yielding two binary cocrystals with different acid:4,4’-bipy molar ratios, (HPip)(4,4’-bipy) (1) and (HCinn)2(4,4’-bipy) (2). The melting point (m.p.) of these cocrystals have been measured and a remarkable difference (ΔT ≈ 78 °C) between them was observed. Moreover, the two cocrystals have been characterized by powder X-ray diffraction (PXRD), elemental analysis (EA), FTIR-ATR, 1H NMR spectroscopies, and single-crystal X-ray diffraction. The study of their structural packings via Hirshfeld surface analysis and energy frameworks revealed the important contribution of the π···π and C-H···π interactions to the formation of different structural packing motifs, this being the main reason for the difference of m.p. between them. Moreover, it has been observed that 1 and 2 presented the same packing motifs as the crystal structure of their corresponding carboxylic acids, but 1 and 2 showed lower m.p. than those of the carboxylic acids, which could be related to the lower strength of the acid-pyridine heterosynthons respect to the acid-acid homosynthons in the crystal structures. Full article
Show Figures

Graphical abstract

22 pages, 6359 KiB  
Article
Synthesis, Cytotoxic Activity, Crystal Structure, DFT Studies and Molecular Docking of 3-Amino-1-(2,5-dichlorophenyl)-8-methoxy-1H-benzo[f]chromene-2-carbonitrile
by Menna El Gaafary, Tatiana Syrovets, Hany M. Mohamed, Ahmed A. Elhenawy, Ahmed M. El-Agrody, Abd El-Galil E. Amr, Hazem A. Ghabbour and Abdulrahman A. Almehizia
Crystals 2021, 11(2), 184; https://doi.org/10.3390/cryst11020184 - 13 Feb 2021
Cited by 28 | Viewed by 5047
Abstract
The target compound 3-amino-1-(2,5-d ichlorophenyl)-8-methoxy-1H-benzo[f]-chromene-2-carbonitrile (4) was synthesized via a reaction of 6-methoxynaphthalen-2-ol (1), 2,5-dichlorobenzaldehyde (2), and malononitrile (3) in ethanolic piperidine solution under microwave irradiation. The newly synthesized β-enaminonitrile was characterized by FT-IR, 1H [...] Read more.
The target compound 3-amino-1-(2,5-d ichlorophenyl)-8-methoxy-1H-benzo[f]-chromene-2-carbonitrile (4) was synthesized via a reaction of 6-methoxynaphthalen-2-ol (1), 2,5-dichlorobenzaldehyde (2), and malononitrile (3) in ethanolic piperidine solution under microwave irradiation. The newly synthesized β-enaminonitrile was characterized by FT-IR, 1H NMR, 13C NMR, mass spectroscopy, elemental analysis and X-ray diffraction data. Its cytotoxic activity was evaluated against three different human cancer cell lines MDA-MB-231, A549, and MIA PaCa-2 in comparison to the positive controls etoposide and camptothecin employing the XTT cell viability assay. The analysis of the Hirshfeld surface was utilized to visualize the reliability of the crystal package. The obtained results confirmed that the tested molecule revealed promising cytotoxic activities against the three cancer cell lines. Furthermore, theoretical calculations (DFT) were carried out with the Becke3-Lee-Yang-parr (B3LYP) level using 6-311++G(d,p) basis. The optimization geometry for molecular structures was in agreement with the X-ray structure data. The HOMO-LUMO energy gap of the studied system was discussed. The intermolecular-interactions were studied through analysis of the topological-electron-density(r) using the QTAIM and NCI methods. The novel compound exhibited favorable ADMET properties and its molecular modeling analysis showed strong interaction with DNA methyltransferase 1. Full article
Show Figures

Figure 1

13 pages, 2982 KiB  
Article
Coordination Polymers in Dicyanamido-Cadmium(II) with Diverse Network Dimensionalities
by Franz A. Mautner, Patricia V. Jantscher, Roland C. Fischer, Ana Torvisco, Klaus Reichmann, Nahed M. H. Salem, Kenneth J. Gordon, Febee R. Louka and Salah S. Massoud
Crystals 2021, 11(2), 181; https://doi.org/10.3390/cryst11020181 - 12 Feb 2021
Cited by 9 | Viewed by 2258
Abstract
The synthesis and structural characterization of six dicyanamido-cadmium(II) complexes are reported: catena-[Cd(μ1,3-dca)(μ1,5-dca)(3-ampy)] (1), catena-[Cd31,3,5-dca)21,5-dca)4(pyNO)2(H2O)2] (2), catena-{Cd(H [...] Read more.
The synthesis and structural characterization of six dicyanamido-cadmium(II) complexes are reported: catena-[Cd(μ1,3-dca)(μ1,5-dca)(3-ampy)] (1), catena-[Cd31,3,5-dca)21,5-dca)4(pyNO)2(H2O)2] (2), catena-{Cd(H2O)21,5-dca)2](2,6-lut-NO)} (3), catena-[Cd(Me2en)(μ1,5-dca)2] (4), catena-[Cd(Me4en)(μ1,5-dca)2] (5), and [Cd(1,8-damnp)2(dca)2] (6), where dca = dicyanamide anion, 3-ampy = 3-aminopyridine, pyNO = pyridine-N-oxide, 2,6-lut-NO = 2,6-lutidine-N-oxide, Me2en = N,N-dimethyl-ethylenediamine, Me4en = N,N,N′,N′-tetramethyl-ethylenediamine, and 1,8-damnp = 1,8-diaminonaphthaline. The coordination polymers have different dimensionalities: 1 and 5 form 3D networks structures; 3 and 4 form polymeric 1D chains and 1DD double chains, respectively. Ribbons of three fused polymeric chains are observed in 2. In 6, the mononuclear complex units form a hydrogen-bonded supramolecular 3D network. In the coordination polymer compounds, the dca linkers display three bonding modes: the most common μ1,5-dca and the least popular μ1,3- and μ1,3,5-dca bonding. The luminescence emission and thermal properties of the complexes were investigated. Full article
Show Figures

Graphical abstract

15 pages, 3057 KiB  
Article
Structural Characterization, Magnetic and Luminescent Properties of Praseodymium(III)-4,4,4-Trifluoro-1-(2-Naphthyl)Butane-1,3-Dionato(1-) Complexes
by Franz A. Mautner, Florian Bierbaumer, Roland C. Fischer, Ramon Vicente, Ànnia Tubau, Arnau Ferran and Salah S. Massoud
Crystals 2021, 11(2), 179; https://doi.org/10.3390/cryst11020179 - 11 Feb 2021
Cited by 11 | Viewed by 3200
Abstract
Four new Pr(III) mononuclear complexes of formula [Pr(ntfa)3(MeOH)2] (1), [Pr(ntfa)3(bipy)2] (2), [Pr(ntfa)3(4,4′-Mt2bipy)] (3) and [Pr(ntfa)3(5,5′-Me2bipy)] (4), where ntfa = [...] Read more.
Four new Pr(III) mononuclear complexes of formula [Pr(ntfa)3(MeOH)2] (1), [Pr(ntfa)3(bipy)2] (2), [Pr(ntfa)3(4,4′-Mt2bipy)] (3) and [Pr(ntfa)3(5,5′-Me2bipy)] (4), where ntfa = 4,4,4-trifuoro-1-(naphthalen-2-yl)butane-1,3-dionato(1-), 5,5′-Me2bipy = 5,5′-dimethyl-2,2′-dipyridine, 4,4′-Mt2bipy = 4,4′-dimethoxy-2,2′-dipyridine, have been synthesized and structurally characterized. The complexes display the coordination numbers 8 for 1, 3 and 4, and 10 for 2. Magnetic measurements of complexes 1–4 were consistent with a magnetically uncoupled Pr3+ ion in the 3H4 ground state. The solid state luminescence studies showed that the ancillary chelating bipyridyl ligands in the 24 complexes greatly enhance the luminescence emission in the visible and NIR regions through efficient energy transfer from the ligands to the central Pr3+ ion; behaving as “antenna” ligands. Full article
Show Figures

Figure 1

15 pages, 4930 KiB  
Article
Crystal Structures of New Ivermectin Pseudopolymorphs
by Kirill Shubin, Agris Bērziņš and Sergey Belyakov
Crystals 2021, 11(2), 172; https://doi.org/10.3390/cryst11020172 - 9 Feb 2021
Cited by 6 | Viewed by 3585
Abstract
New pseudopolymorphs of ivermectin (IVM), a potential anti-COVID-19 drug, were prepared. The crystal structure for three pseudopolymorphic crystalline forms of IVM has been determined using single-crystal X-ray crystallographic analysis. The molecular conformation of IVM in crystals has been compared with the conformation of [...] Read more.
New pseudopolymorphs of ivermectin (IVM), a potential anti-COVID-19 drug, were prepared. The crystal structure for three pseudopolymorphic crystalline forms of IVM has been determined using single-crystal X-ray crystallographic analysis. The molecular conformation of IVM in crystals has been compared with the conformation of isolated molecules modeled by DFT calculations. In a solvent with relatively small molecules (ethanol), IVM forms monoclinic crystal structure (space group I2), which contains two types of voids. When crystallized from solvents with larger molecules, like γ-valerolactone (GVL) and methyl tert-butyl ether (MTBE), IVM forms orthorhombic crystal structure (space group P212121). Calculations of the lattice energy indicate that interactions between IVM and solvents play a minor role; the main contribution to energy is made by the interactions between the molecules of IVM itself, which form a framework in the crystal structure. Interactions between IVM and molecules of solvents were evaluated using Hirshfeld surface analysis. Thermal analysis of the new pseudopolymorphs of IVM was performed by differential scanning calorimetry and thermogravimetric analysis. Full article
Show Figures

Figure 1

18 pages, 8590 KiB  
Article
In Situ Investigations on Stress and Microstructure Evolution in Polycrystalline Ti(C,N)/α-Al2O3 CVD Coatings under Thermal Cycling Loads
by José García, Maiara Moreno, Wei Wan, Daniel Apel, Haroldo Pinto, Matthias Meixner, Manuela Klaus and Christoph Genzel
Crystals 2021, 11(2), 158; https://doi.org/10.3390/cryst11020158 - 4 Feb 2021
Cited by 11 | Viewed by 3188
Abstract
The stress behavior and the associated microstructure evolution of industrial Ti(C,N)/α-Al2O3 coatings subjected to thermal cycling are investigated by in situ energy dispersive synchrotron X-ray diffraction and transmission electron microscopy. Temperature-dependent stresses and changes in microstructural parameters (domain size and [...] Read more.
The stress behavior and the associated microstructure evolution of industrial Ti(C,N)/α-Al2O3 coatings subjected to thermal cycling are investigated by in situ energy dispersive synchrotron X-ray diffraction and transmission electron microscopy. Temperature-dependent stresses and changes in microstructural parameters (domain size and microstrain) are analyzed by in situ measurements at different temperatures between 25 and 800 °C, both in the heating up and cooling down step, including several thermal cycles. Transmission electron microscopy is used to evaluate defects before and after the thermal treatment. The introduction of high compressive stresses in α-Al2O3 by top-blasting is connected to a high defect density at the basal planes of the alumina layer. The stress relaxation of the alumina layer at high temperatures is associated with a successive annihilation of defects until a reversible temperature-dependent stress condition is set. Top-blasting does not change the initial microstructure and residual stress of the Ti(C,N) layer. Ti(C,N) shows a cyclic stress behavior associated with the heat treatment and an elastic deformation behavior in the temperature range investigated. Full article
Show Figures

Graphical abstract

10 pages, 1782 KiB  
Article
Fast-Response Liquid Crystal for Spatial Light Modulator and LiDAR Applications
by Junyu Zou, Qian Yang, En-Lin Hsiang, Haruki Ooishi, Zhuo Yang, Kifumi Yoshidaya and Shin-Tson Wu
Crystals 2021, 11(2), 93; https://doi.org/10.3390/cryst11020093 - 22 Jan 2021
Cited by 34 | Viewed by 4351
Abstract
We report a new nematic mixture for liquid-crystal-on-silicon spatial light modulator (SLM) and light detection and ranging (LiDAR) applications. The mixture exhibits a relatively high birefringence (Δn), moderate dielectric anisotropy (Δɛ), low viscosity, and reasonably good photostability. To achieve [...] Read more.
We report a new nematic mixture for liquid-crystal-on-silicon spatial light modulator (SLM) and light detection and ranging (LiDAR) applications. The mixture exhibits a relatively high birefringence (Δn), moderate dielectric anisotropy (Δɛ), low viscosity, and reasonably good photostability. To achieve 2π phase change at 5 V, the response time (on + off) is 2.5 ms at 40 °C with λ = 633 nm, and 5.9 ms with λ = 905 nm. After exposure by a blue laser (λ = 465 nm) with a total dosage up to 20 MJ/cm2, this mixture shows no sign of photodegradation. Widespread applications of this material for high brightness SLMs, LiDAR, near-eye displays, and head-up displays are foreseeable. Full article
Show Figures

Figure 1

12 pages, 2418 KiB  
Article
One-Step Carbothermal Synthesis of Super Nanoadsorbents for Rapid and Recyclable Wastewater Treatment
by Wen-chan Ji, Ping Hu, Xiao-yu Wang, Sandra Elizabeth Saji, Tian Chang, Xin-yu Zhu, Fairy Fan Yang, Qi-gao Cao, Rui Dang, Kuai-she Wang and Zongyou Yin
Crystals 2021, 11(1), 75; https://doi.org/10.3390/cryst11010075 - 18 Jan 2021
Cited by 1 | Viewed by 2217
Abstract
As a potential magnetic super adsorbent in wastewater treatment, Fe3O4 has been researched intensively up to date. However, its key problem of poor comprehensive magnetic properties is still challenging. In this work, an effective solution to this problem has been [...] Read more.
As a potential magnetic super adsorbent in wastewater treatment, Fe3O4 has been researched intensively up to date. However, its key problem of poor comprehensive magnetic properties is still challenging. In this work, an effective solution to this problem has been developed by a one-step carbothermal synthesis of Fe3O4 crystals, which are merited with pure-stoichiometry (FeO-phase free), high crystallinity, small-size (~10 nm), strong magnetism and sensitive magnetic response. The unveiled saturation magnetization of Fe3O4 nanoparticles reaches as high as 90.32 emu·g−1, and the fastest magnetic response time is as short as only 5 s. Such magnetic Fe3O4 super adsorbents exhibit outstanding performance when applied as an adsorbent for wastewater treatment. They can quickly and effectively adsorb methylene blue with an adsorption capacity of 62.5 mg·g−1, which is much higher than that of Fe3O4 adsorbents prepared by other methods reported in the literature. Importantly, this capacity is refreshable after removing the adsorbed methylene blue just by ultrasonic cleaning. With such combined outstanding magnetic properties and recyclable adsorption capacity, the problems associated with the conventional adsorbent solid–liquid separation could be resolved, thus making a forward development towards industrial wastewater treatment. Full article
Show Figures

Figure 1

15 pages, 3218 KiB  
Article
Evaluation of Novel Glycerol/PEO Gel Polymer Electrolytes for Non-Toxic Dye-Sensitized Solar Cells with Natural Dyes Regarding Long-Term Stability and Reproducibility
by Jan Lukas Storck, Marius Dotter, Bennet Brockhagen and Timo Grothe
Crystals 2020, 10(12), 1158; https://doi.org/10.3390/cryst10121158 - 19 Dec 2020
Cited by 11 | Viewed by 2866
Abstract
Alongside efficiency, long-term stability of dye-sensitized solar cells (DSSCs) is a key factor regarding their commercialization. One suitable and cost-effective method to increase the long-term stability is to prevent leakage and evaporation of the electrolyte by gelling it with polymers such as poly(ethylene [...] Read more.
Alongside efficiency, long-term stability of dye-sensitized solar cells (DSSCs) is a key factor regarding their commercialization. One suitable and cost-effective method to increase the long-term stability is to prevent leakage and evaporation of the electrolyte by gelling it with polymers such as poly(ethylene oxide) (PEO) and gaining a gel polymer electrolyte (GPE). In this study, a GPE based on PEO and glycerol is investigated for the first time as electrolyte for environmentally friendly DSSCs with natural dyes. To evaluate the novel glycerol/PEO GPE, the ionic conductivity and resulting efficiency progressions of DSSCs were measured for 75 days. Different molecular weights (MWs) of PEO and blending with poly(vinylidene fluoride) (PVDF) had negligible impact on efficiencies. 17 wt% PEO was found to be more suitable than lower concentrations and resulted in a relatively high efficiency over 75 days. A glycerol electrolyte without PEO had higher ionic conductivity and achieved higher efficiencies as well but leaked from the unsealed DSSCs. In addition, the reproducibility was examined especially, which appeared to be reduced by considerable differences between identical DSSCs and between measurements of the same DSSC at different times. This emphasizes the relevance of studying multiple DSSC per sample to ensure reliable results. Full article
Show Figures

Figure 1

7 pages, 1200 KiB  
Communication
Crystallization and Preliminary X-ray Diffraction Study of a Novel Bacterial Homologue of Mammalian Hormone-Sensitive Lipase (halip1) from Halocynthiibacter arcticus
by Sangeun Jeon, Jisub Hwang, Wanki Yoo, Hackwon Do, Han-Woo Kim, Kyeong Kyu Kim, Jun Hyuck Lee and T. Doohun Kim
Crystals 2020, 10(11), 963; https://doi.org/10.3390/cryst10110963 - 23 Oct 2020
Cited by 1 | Viewed by 1965
Abstract
Hormone sensitive lipase is a central enzyme in triacylglycerol hydrolysis, lipid modification, and transformation of various lipids. Microbial hormone-sensitive lipases, which are highly similar to a catalytic domain of mammalian equivalents, have attracted strong attention due to their application potentials. Here, characterization and [...] Read more.
Hormone sensitive lipase is a central enzyme in triacylglycerol hydrolysis, lipid modification, and transformation of various lipids. Microbial hormone-sensitive lipases, which are highly similar to a catalytic domain of mammalian equivalents, have attracted strong attention due to their application potentials. Here, characterization and a preliminary X-ray crystallographic analysis of a novel bacterial homologue of hormone-sensitive lipase (HaLip1) from Halocynthiibacter arcticus is reported. Sequence analysis shows that HaLip1 has a conserved serine residue within the GDSAG motif. In addition, a characteristic HGGG motif for oxyanion formation was identified. The HaLip1 protein was overexpressed in E. coli. SDS-PAGE, overlay assay, and mass analysis were performed to confirm purity and activity of HaLip1 protein. Furthermore, HaLip1 was crystallized in a condtion consisting of 25% (w/v) PEG 3350, 0.1 M Hepes-KOH, pH 7.5, 0.2 M sodium chloride. Diffraction data were processed to 1.30 Å with an Rmerge of 7.3%. The crystals of HaLip1 belong to the P212121, with unit cell parameters of a = 54.6 Å, b = 59.5 Å, and c = 82.9 Å. Full article
Show Figures

Graphical abstract

17 pages, 3197 KiB  
Article
Calcium Phosphate Nanoparticle Precipitation by a Continuous Flow Process: A Design of Experiment Approach
by Lorenzo Degli Esposti, Alessandro Dotti, Alessio Adamiano, Claudia Fabbi, Eride Quarta, Paolo Colombo, Daniele Catalucci, Claudio De Luca and Michele Iafisco
Crystals 2020, 10(10), 953; https://doi.org/10.3390/cryst10100953 - 19 Oct 2020
Cited by 15 | Viewed by 3921
Abstract
Calcium phosphate nanoparticles (CaP NPs) are an efficient class of nanomaterials mainly used for biomedical applications but also very promising in other sectors such as cosmetics, catalysis, water remediation, and agriculture. Unfortunately, as in the case of other nanomaterials, their wide application is [...] Read more.
Calcium phosphate nanoparticles (CaP NPs) are an efficient class of nanomaterials mainly used for biomedical applications but also very promising in other sectors such as cosmetics, catalysis, water remediation, and agriculture. Unfortunately, as in the case of other nanomaterials, their wide application is hindered by the difficulty to control size, morphology, purity and degree of particle aggregation in the translation from laboratory to industrial scale production that is usually carried out in batch or semi-batch systems. In this regard, the use of continuous flow synthesis can help to solve this problem, providing more homogenous reaction conditions and highly reproducible synthesis. In this paper, we have studied with a design of experiment approach the precipitation of citrate functionalized CaP NPs aided by sonication using a continuous flow wet chemical precipitation, and the effect of some of the most relevant process factors (i.e., reactant flow rate, sonication amplitude, and maturation time) on the physico-chemical properties of the NPs were evaluated. From the statistical data analysis, we have found that CaP NP dimensions are influenced by the reactor flow rate, while the crystalline domain dimensions and product purity are influenced by the maturation process. This work provides a deeper understanding of the relationships between reaction process factors and CaP NP properties, and is a relevant contribution for the scale-up production of CaP NPs for nanomedical or other applications. Full article
Show Figures

Graphical abstract

10 pages, 2872 KiB  
Article
The Detection of Monoclinic Zirconia and Non-Uniform 3D Crystallographic Strain in a Re-Oxidized Ni-YSZ Solid Oxide Fuel Cell Anode
by Thomas M. M. Heenan, Antonis Vamvakeros, Chun Tan, Donal P. Finegan, Sohrab R. Daemi, Simon D. M. Jacques, Andrew M. Beale, Marco Di Michiel, Dan J. L. Brett and Paul R. Shearing
Crystals 2020, 10(10), 941; https://doi.org/10.3390/cryst10100941 - 16 Oct 2020
Cited by 4 | Viewed by 3298
Abstract
The solid oxide fuel cell (SOFC) anode is often composed of nickel (Ni) and yttria-stabilized zirconia (YSZ). The yttria is added in small quantities (e.g., 8 mol %) to maintain the crystallographic structure throughout the operating temperatures (e.g., room-temperature to >800 °C). The [...] Read more.
The solid oxide fuel cell (SOFC) anode is often composed of nickel (Ni) and yttria-stabilized zirconia (YSZ). The yttria is added in small quantities (e.g., 8 mol %) to maintain the crystallographic structure throughout the operating temperatures (e.g., room-temperature to >800 °C). The YSZ skeleton provides a constraining structural support that inhibits degradation mechanisms such as Ni agglomeration and thermal expansion miss-match between the anode and electrolyte layers. Within this structure, the Ni is deposited in the oxide form and then reduced during start-up; however, exposure to oxygen (e.g., during gasket failure) readily re-oxidizes the Ni back to NiO, impeding electrochemical performance and introducing complex structural stresses. In this work, we correlate lab-based X-ray computed tomography using zone plate focusing optics, with X-ray synchrotron diffraction computed tomography to explore the crystal structure of a partially re-oxidized Ni/NiO-YSZ electrode. These state-of-the-art techniques expose several novel findings: non-isotropic YSZ lattice distributions; the presence of monoclinic zirconia around the oxidation boundary; and metallic strain complications in the presence of variable yttria content. This work provides evidence that the reduction–oxidation processes may destabilize the YSZ structure, producing monoclinic zirconia and microscopic YSZ strain, which has implications upon the electrode’s mechanical integrity and thus lifetime of the SOFC. Full article
Show Figures

Graphical abstract

13 pages, 4198 KiB  
Article
In Situ Electric-Field Study of Surface Effects in Domain Engineered Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Relaxor Crystals by Grazing Incidence Diffraction
by Markys G. Cain, Margo Staruch, Paul Thompson, Christopher Lucas, Didier Wermeille, Yves Kayser, Burkhard Beckhoff, Sam E. Lofland and Peter Finkel
Crystals 2020, 10(9), 728; https://doi.org/10.3390/cryst10090728 - 20 Aug 2020
Cited by 2 | Viewed by 2700
Abstract
In this work, we present a grazing incidence X-ray diffraction study of the surface of a 0.24Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) [011] poled rhombohedral single crystal. The near surface microstructure (the top several [...] Read more.
In this work, we present a grazing incidence X-ray diffraction study of the surface of a 0.24Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) [011] poled rhombohedral single crystal. The near surface microstructure (the top several tens to hundreds of unit cells) was measured in situ under an applied electric field. The strains calculated from the change in lattice parameters have been compared to the macroscopic strain measured with a strain gauge affixed to the sample surface. The depth dependence of the electrostrain at the crystal surface was investigated as a function of temperature. The analysis revealed hidden sweet spots featuring unusually high strains that were observed as a function of depth, temperature and orientation of the lattice planes. Full article
Show Figures

Figure 1

23 pages, 14465 KiB  
Article
Computational Analysis of Low-Energy Dislocation Configurations in Graded Layers
by Daniele Lanzoni, Fabrizio Rovaris and Francesco Montalenti
Crystals 2020, 10(8), 661; https://doi.org/10.3390/cryst10080661 - 1 Aug 2020
Cited by 3 | Viewed by 2783
Abstract
Graded layers are widely exploited in semiconductor epitaxy as they typically display lower threading dislocation density with respect to constant-composition layers. However, strain relaxation occurs via a rather complex distribution of misfit dislocations. Here we exploit a suitable computational approach to investigate dislocation [...] Read more.
Graded layers are widely exploited in semiconductor epitaxy as they typically display lower threading dislocation density with respect to constant-composition layers. However, strain relaxation occurs via a rather complex distribution of misfit dislocations. Here we exploit a suitable computational approach to investigate dislocation distributions minimizing the elastic energy in overcritical constant-composition and graded layers. Predictions are made for SiGe/Si systems, but the methodology, based on the exact (albeit in two dimensions and within linear elasticity theory) solution of the stress field associated with a periodic distribution of defects, is general. Results are critically compared with experiments, when possible, and with a previous mean-field model. A progressive transition from one-dimensional to two-dimensional distributions of defects when continuous linear grading is approached is clearly observed. Interestingly, analysis of the low-energy distribution of dislocations reveals close analogies with typical pile-ups as produced by dislocation multiplication. Full article
Show Figures

Figure 1

12 pages, 5626 KiB  
Article
Plasmonic Photomobile Polymer Films
by Riccardo Castagna, Massimo Rippa, Francesco Simoni, Fulvia Villani, Giuseppe Nenna and Lucia Petti
Crystals 2020, 10(8), 660; https://doi.org/10.3390/cryst10080660 - 1 Aug 2020
Cited by 6 | Viewed by 2767
Abstract
In this work, we introduce the approaches currently followed to realize photomobile polymer films and remark on the main features of the system based on a biphasic structure recently proposed. We describe a method of making a plasmonic nanostructure on the surface of [...] Read more.
In this work, we introduce the approaches currently followed to realize photomobile polymer films and remark on the main features of the system based on a biphasic structure recently proposed. We describe a method of making a plasmonic nanostructure on the surface of photomobile films. The characterization of the photomobile film is performed by means of Dark Field Microscopy (DFM), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). Preliminary observations of the light-induced effects on the Localized Surface Plasmon Resonance are also reported. Full article
Show Figures

Figure 1

13 pages, 4462 KiB  
Article
Crystal Structure of the Apo and the ADP-Bound Form of Choline Kinase from Plasmodium falciparum
by Archimede Torretta, Luisa Carlota Lopez-Cara and Emilio Parisini
Crystals 2020, 10(7), 613; https://doi.org/10.3390/cryst10070613 - 14 Jul 2020
Cited by 4 | Viewed by 3976
Abstract
Among the malaria-causing parasites, the deadliest is Plasmodium falciparum, which accounts for the majority of the fatalities. As the infection progresses inside erythrocytes, major cellular and metabolic changes take place. For its own growth, the parasite relies on the accumulation of phospholipids, [...] Read more.
Among the malaria-causing parasites, the deadliest is Plasmodium falciparum, which accounts for the majority of the fatalities. As the infection progresses inside erythrocytes, major cellular and metabolic changes take place. For its own growth, the parasite relies on the accumulation of phospholipids, which are essential for membrane synthesis. Within the Kennedy pathway, the P. falciparum choline kinase (PfChoK) has a central role in the biosynthesis of phosphatidylcholine and its selective inhibition leads to the parasite arrest and eradication. Here, we report the crystal structure of the apo and the ADP-bound form of choline kinase from Plasmodium falciparum at 2.0 and 2.2 Å resolution, respectively. These new structural data will facilitate the implementation of effective structure-based drug development strategies against PfChoK in the fight against malaria. Full article
Show Figures

Figure 1

13 pages, 6118 KiB  
Article
In Situ Imaging of Domain Structure Evolution in LaBGeO5 Single Crystals
by Andrey Akhmatkhanov, Constantine Plashinnov, Maxim Nebogatikov, Evgenii Milov, Ilya Shnaidshtein and Vladimir Shur
Crystals 2020, 10(7), 583; https://doi.org/10.3390/cryst10070583 - 6 Jul 2020
Cited by 6 | Viewed by 2437
Abstract
LaBGeO5 (LBGO) crystals are unique ferroelectric materials for manufacturing highly efficient UV laser sources based on frequency conversion. This is due to their low cut-off wavelength, high nonlinear-optical coefficients, and non-hygroscopicity. Periodical poling requires a deep study of domain kinetics in these [...] Read more.
LaBGeO5 (LBGO) crystals are unique ferroelectric materials for manufacturing highly efficient UV laser sources based on frequency conversion. This is due to their low cut-off wavelength, high nonlinear-optical coefficients, and non-hygroscopicity. Periodical poling requires a deep study of domain kinetics in these crystals. Domain imaging by Cherenkov second harmonic generation microscopy was used to reveal the main processes of domain structure evolution: (1) growth and merging of isolated domains, (2) growth of stripe domains formed on the artificial linear surface defects, and (3) domain shrinkage. In a low field, growth of triangular domains and fast shape recovery after merging were observed, while in a high field, the circular domains grew independently after merging. The revealed essential wall motion anisotropy decreased with the field. The anisotropy led to significant shape transformations during domain shrinkage in low field. The formation of short-lived triangular domains rotated by 180 degrees with respect to the growing isolated domains was observed. The obtained results were explained within the kinetic approach to domain structure evolution based on the analogy between the growth of crystals and ferroelectric domains, taking into account the gradual transition from determined nucleation in low field to the stochastic one in high field. Full article
Show Figures

Figure 1

10 pages, 4670 KiB  
Article
Partial and Total Substitution of Zn by Mg in the Cu2ZnSnS4 Structure
by Diana M. Mena Romero, David Victoria Valenzuela and Cristy L. Azanza Ricardo
Crystals 2020, 10(7), 578; https://doi.org/10.3390/cryst10070578 - 4 Jul 2020
Cited by 3 | Viewed by 2519
Abstract
Cu 2 ZnSnS 4 (CZTS) is a quaternary semiconductor that has emerged as a promising component in solar absorber materials due to its excellent optical properties such as band-gap energy of ca. 1.5 eV and significant absorption coefficient in the order of 10 [...] Read more.
Cu 2 ZnSnS 4 (CZTS) is a quaternary semiconductor that has emerged as a promising component in solar absorber materials due to its excellent optical properties such as band-gap energy of ca. 1.5 eV and significant absorption coefficient in the order of 10 4 cm 1 . Nevertheless, the energy conversion efficiency of CZTS-based devices has not reached the theoretical limits yet, possibly due to the existence of antisite defects (such as Cu Zn or Zn Cu ) and secondary phases. Based on electronic similarities with Zn, Mg has been proposed for Zn substitution in the CZTS structure in the design of alternative semiconductors for thin-film solar cell applications. This work aims to study the properties of the CZTS having Mg incorporated in the structure replacing Zn, with the following stoichiometry: x = 0, 0.25, 0.5, 0.75, and 1 in the formula Cu 2 Zn 1 x Mg x SnS 4 (CZ-MTS). The semiconductor was prepared by the hot injection method, using oleylamine (OLA) as both surfactant and solvent. The presence and concentration of incorporated Mg allowed the fine-tuning of the CZ-MTS semiconductor’s structural and optical properties. Furthermore, it was observed that the inclusion of Mg in the CZTS structure leads to a better embodiment ratio of the Zn during the synthesis, thus reducing the excess of starting precursors. In summary, CZ-MTS is a promising candidate to fabricate high efficient and cost-effective thin-film solar cells made of earth-abundant elements. Full article
Show Figures

Figure 1

15 pages, 4232 KiB  
Article
Novel Pb(II) Complexes: X-Ray Structures, Hirshfeld Surface Analysis and DFT Calculations
by Ghodrat Mahmoudi, Saikat Kumar Seth, Antonio Bauza Riera, Fedor Ivanovich Zubkov and Antonio Frontera
Crystals 2020, 10(7), 568; https://doi.org/10.3390/cryst10070568 - 2 Jul 2020
Cited by 10 | Viewed by 2595
Abstract
Herein we report the synthesis and detailed structural characterization of two new centrosymmetric dinuclear coordination compounds of Pb(II) [Pb2L2(NCS)4] (1) and [Pb2L2(NO3)4]∙2MeOH (2), using the [...] Read more.
Herein we report the synthesis and detailed structural characterization of two new centrosymmetric dinuclear coordination compounds of Pb(II) [Pb2L2(NCS)4] (1) and [Pb2L2(NO3)4]∙2MeOH (2), using the organic ligand 1,2-diphenyl-1,2-bis((methyl(pyridin-2-yl)methylene)hydrazono)ethane (L). In both complexes, each subunit [PbLX2 (X = NO3 or NCS)] adopts a quasi-aromatic Möbius metal chelate structure. Each ligand L is coordinated in a tetradentate coordination mode to Pb(II), yielding the 12π electron chelate ring via two pyridyl-imine units. In compound (1), the coordination sphere is completed by one disordered N,S-coordinated thiocyanate anion and two μ1,1-bridging N-coordinated thiocyanate anions. In compound (2), the coordination sphere of Pb(II) is completed by two monodentate and two bidentate nitrato ligands (two of them acting as bridging ligands). Crystal packing of both compounds is stabilized by intermolecular hydrogen bonds, intra- and intermolecular C–H∙∙∙π interactions. The Hirshfeld molecular surfaces of (1) and (2) demonstrate that their packing is dominated by C–H∙∙∙O/N/S interactions as well as by far less favored H∙∙∙H contacts. Full article
Show Figures

Graphical abstract

12 pages, 7840 KiB  
Article
Water Structures and Packing Efficiency in Methylene Blue Cyanometallate Salts
by Stefano Canossa, Claudia Graiff, Domenico Crocco and Giovanni Predieri
Crystals 2020, 10(7), 558; https://doi.org/10.3390/cryst10070558 - 1 Jul 2020
Cited by 5 | Viewed by 3358
Abstract
Crystal structure prediction is the holy grail of crystal engineering and is key to its ambition of driving the formation of solids based on the selection of their molecular constituents. However, this noble quest is hampered by the limited predictability of the incorporation [...] Read more.
Crystal structure prediction is the holy grail of crystal engineering and is key to its ambition of driving the formation of solids based on the selection of their molecular constituents. However, this noble quest is hampered by the limited predictability of the incorporation of solvent molecules, first and foremost the ubiquitous water. In this context, we herein report the structure of four methylene blue cyanometallate phases, where anions with various shapes and charges influence the packing motif and lead to the formation of differently hydrated structures. Importantly, water molecules are observed to play various roles as isolated fillings, dimers, or an infinite network with up to 13 water molecules per repeating unit. Each crystal structure has been determined by single-crystal X-ray diffraction and evaluated with the aid of Hirshfeld surface analysis, focussing on the role of water molecules and the hierarchy of different classes of interactions in the overall supramolecular landscape of the crystals. Finally, the collected pieces of evidence are matched together to highlight the leading role of MB stacking and to derive an explanation for the observed hydration diversity based on the structural role of water molecules in the crystal architecture. Full article
Show Figures

Graphical abstract

7 pages, 2160 KiB  
Article
Unexpected Selective Gas Adsorption on a ‘Non-Porous’ Metal Organic Framework
by Stuart Beveridge, Craig A. McAnally, Gary S. Nichol, Alan R. Kennedy, Edmund J. Cussen and Ashleigh J. Fletcher
Crystals 2020, 10(6), 548; https://doi.org/10.3390/cryst10060548 - 26 Jun 2020
Cited by 2 | Viewed by 2696
Abstract
A metal organic framework Cu(tpt)BF4·¾H2O was synthesized as a potential carbon capture material, with the aim being to exploit the Lewis base interaction of the incorporated ligand functionalities with acidic gas. The material displays high thermal stability but an [...] Read more.
A metal organic framework Cu(tpt)BF4·¾H2O was synthesized as a potential carbon capture material, with the aim being to exploit the Lewis base interaction of the incorporated ligand functionalities with acidic gas. The material displays high thermal stability but an exceptionally low surface area; however, this contrasts starkly with its ability to capture carbon dioxide, demonstrating significant activated diffusion within the framework. The full characterization of the material shows a robust structure, where the CO2 sorption is 120% greater than current industrial methods using liquid amine solutions; the thermal energy required for sorbent regeneration is reduced by 65%, indicating the true industrial potential of the synthesized material. Full article
Show Figures

Figure 1

28 pages, 7336 KiB  
Article
Properties of Fourier Syntheses and New Syntheses
by Maria Cristina Burla, Benedetta Carrozzini, Giovanni Luca Cascarano, Carmelo Giacovazzo and Giampiero Polidori
Crystals 2020, 10(6), 538; https://doi.org/10.3390/cryst10060538 - 24 Jun 2020
Cited by 1 | Viewed by 2208
Abstract
In this study, the properties of observed, difference, and hybrid syntheses (hybrid indicates a combination of observed and difference syntheses) are investigated from two points of view. The first has a statistical nature and aims to estimate the amplitudes of peaks corresponding to [...] Read more.
In this study, the properties of observed, difference, and hybrid syntheses (hybrid indicates a combination of observed and difference syntheses) are investigated from two points of view. The first has a statistical nature and aims to estimate the amplitudes of peaks corresponding to the model atoms, belonging or not belonging to the target structure; the amplitudes of peaks related to the target atoms, missed or shared with the model; and finally, the quality of the background. The latter point deals with the practical features of Fourier syntheses, the special role of weighted syntheses, and their usefulness in practical applications. It is shown how the properties of the various syntheses may vary according to the available structural model and, in particular, how weighted hybrid syntheses may act like an observed and difference or a full hybrid synthesis. The theoretical results obtained in this paper suggest new Fourier syntheses using novel Fourier coefficients: their main features are first discussed from a mathematical point of view. Extended experimental applications show that they meet the basic mission of the Fourier syntheses, enhancing peaks corresponding to the missed target atoms, depleting peaks corresponding to the model atoms not belonging to the target, and significantly reducing the background. A comparison with the results obtained via the most popular modern Fourier syntheses is made, suggesting a role for the new syntheses in modern procedures for phase extension and refinement. The most promising new Fourier synthesis has been implemented in the current version of SIR2014. Full article
Show Figures

Figure 1

14 pages, 1795 KiB  
Article
Analysis of the Phase Stability of LiMO2 Layered Oxides (M = Co, Mn, Ni)
by Mariarosaria Tuccillo, Oriele Palumbo, Michele Pavone, Ana Belen Muñoz-García, Annalisa Paolone and Sergio Brutti
Crystals 2020, 10(6), 526; https://doi.org/10.3390/cryst10060526 - 20 Jun 2020
Cited by 26 | Viewed by 5281
Abstract
Transition-metal (TM) layered oxides have been attracting enormous interests in recent decades because of their excellent functional properties as positive electrode materials in lithium-ion batteries. In particular LiCoO2 (LCO), LiNiO2 (LNO) and LiMnO2 (LMO) are the structural prototypes of a [...] Read more.
Transition-metal (TM) layered oxides have been attracting enormous interests in recent decades because of their excellent functional properties as positive electrode materials in lithium-ion batteries. In particular LiCoO2 (LCO), LiNiO2 (LNO) and LiMnO2 (LMO) are the structural prototypes of a large family of complex compounds with similar layered structures incorporating mixtures of transition metals. Here, we present a comparative study on the phase stability of LCO, LMO and LNO by means of first-principles calculations, considering three different lattices for all oxides, i.e., rhombohedral (hR12), monoclinic (mC8) and orthorhombic (oP8). We provide a detailed analysis—at the same level of theory—on geometry, electronic and magnetic structures for all the three systems in their competitive structural arrangements. In particular, we report the thermodynamics of formation for all ground state and metastable phases of the three compounds for the first time. The final Gibbs Energy of Formation values at 298 K from elements are: LCO(hR12) −672 ± 8 kJ mol−1; LCO(mC8) −655 ± 8 kJ mol−1; LCO(oP8) −607 ± 8 kJ mol−1; LNO(hR12) −548 ± 8 kJ mol−1; LNO(mC8) −557 ± 8 kJ mol−1; LNO(oP8) −548 ± 8 kJ mol−1; LMO(hR12) −765 ± 10 kJ mol−1; LMO(mC8) −779 ± 10 kJ mol−1; LMO(oP8) −780 ± 10 kJ mol−1. These values are of fundamental importance for the implementation of reliable multi-phase thermodynamic modelling of complex multi-TM layered oxide systems and for the understanding of thermodynamically driven structural phase degradations in real applications such as lithium-ion batteries. Full article
Show Figures

Figure 1

43 pages, 17502 KiB  
Article
Understanding the Antipathogenic Performance of Nanostructured and Conventional Copper Cold Spray Material Consolidations and Coated Surfaces
by Bryer C. Sousa, Kristin L. Sundberg, Matthew A. Gleason and Danielle L. Cote
Crystals 2020, 10(6), 504; https://doi.org/10.3390/cryst10060504 - 12 Jun 2020
Cited by 15 | Viewed by 5045
Abstract
The role of high strain rate and severe plastic deformation, microstructure, electrochemical behavior, surface chemistry and surface roughness were characterized for two copper cold spray material consolidations, which were produced from conventionally gas-atomized copper powder as well as spray-dried copper feedstock, during the [...] Read more.
The role of high strain rate and severe plastic deformation, microstructure, electrochemical behavior, surface chemistry and surface roughness were characterized for two copper cold spray material consolidations, which were produced from conventionally gas-atomized copper powder as well as spray-dried copper feedstock, during the course of this work. The motivation underpinning this work centers upon the development of a more robust understanding of the microstructural features and properties of the conventional copper and nanostructured copper coatings as they relate to antipathogenic contact killing and inactivation applications. Prior work has demonstrated greater antipathogenic efficacy with respect to the nanostructured coating versus the conventional coating. Thus, microstructural analysis was performed in order to establish differences between the two coatings that their respective pathogen kill rates could be attributed to. Results from advanced laser-induced projectile impact testing, X-ray diffraction, scanning electron microscopy, electron backscatter diffraction, scanning transmission microscopy, nanoindentation, energy-dispersive X-ray spectroscopy, nanoindentation, confocal microscopy, atomic force microscopy, linear polarization, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and copper ion release assaying were performed during the course of this research. Full article
Show Figures

Figure 1

17 pages, 8392 KiB  
Article
Coordination Compounds Featuring Non-Toxic Chiral 1,4-Dicarboxylic Acids and Copper(II)
by Marius Kremer, Jan van Leusen and Ulli Englert
Crystals 2020, 10(6), 485; https://doi.org/10.3390/cryst10060485 - 6 Jun 2020
Viewed by 2880
Abstract
Six new coordination compounds of copper cations and 1,4-dicarboxylic acids have been synthesized and structurally investigated. Aspartic acid (H2asp), enantiopure, racemic and meso tartaric acid (H2tart), di-para-toluyltartaric acid (H2dptta) and dibenzoyltartaric acid (H2dbta) [...] Read more.
Six new coordination compounds of copper cations and 1,4-dicarboxylic acids have been synthesized and structurally investigated. Aspartic acid (H2asp), enantiopure, racemic and meso tartaric acid (H2tart), di-para-toluyltartaric acid (H2dptta) and dibenzoyltartaric acid (H2dbta) represent environmentally benign water-soluble proligands which may be deprotonated for oxygen coordination. Chelating ligands such as tetramethylethylenediamine (TMEDA) and 2-aminomethylpyridine (AMPY) efficiently reduce the dimensionality of the target compounds, and additional aqua ligands complete the coordination environments. In this line of argument, the discrete mononuclear complexes [Cu(AMPY)(asp)(H2O)] and [Cu(Hdbta)2(H2O)4] were obtained; for the latter, only a preliminary structure model can be presented which, however, agrees with the powder diffraction pattern of the bulk. From enantiopure and racemic tartaric acid and TMEDA the closely related chain polymers [CuII(H2tart)(TMEDA)(H2O)2)]n were obtained; the racemic compound consists of individual homochiral strands of opposite chirality. The high steric demand of di-para-toluyltartaric acid leads to one-dimensional [Cu(dptta)(EtOH)(H2O)2]n with coordinated ethanol (EtOH) in the distant Jahn–Teller site of the coordination sphere. Cu(II), meso-tartaric acid and TMEDA aggregate to a trinuclear coordination compound [CuII2CuI(H2tart)(Htart)(TMEDA)2]. Its peripheral cations show the expected Jahn–Teller geometry of Cu(II), but the unambiguous assignment of the oxidation state +I for central cation required susceptibility measurements: their results prove the presence of only two and only very weakly interacting divalent cations, separated by a diamagnetic center. Full article
Show Figures

Graphical abstract

15 pages, 2415 KiB  
Article
Synthesis, Characterization and Biological Studies of Ether–Based Ferrocenyl Amides and their Organic Analogues
by Sana Waseem Abbasi, Naveed Zafar Ali, Martin Etter, Muhammad Shabbir, Zareen Akhter, Stacey J. Smith, Hammad Ismail and Bushra Mirza
Crystals 2020, 10(6), 480; https://doi.org/10.3390/cryst10060480 - 4 Jun 2020
Viewed by 2605
Abstract
Ferrocenyl amides (FB1-FB13) and their organic analogues (BZ1-BZ13) were prepared by a low-temperature condensation method. Ferrocenyl amides were synthesised using 4-ferrocenylbenzoyl chloride and ether-based amines and diamines. Benzoyl chloride was used to synthesise organic analogues by reacting with various amines. The synthesised compounds [...] Read more.
Ferrocenyl amides (FB1-FB13) and their organic analogues (BZ1-BZ13) were prepared by a low-temperature condensation method. Ferrocenyl amides were synthesised using 4-ferrocenylbenzoyl chloride and ether-based amines and diamines. Benzoyl chloride was used to synthesise organic analogues by reacting with various amines. The synthesised compounds were characterised by elemental, spectroscopic (FT-IR and NMR) and single crystal X-ray diffraction methods. Crystal structures of the representative organic analogues (BZ2 and BZ6) were solved by single crystal X-ray diffraction. BZ2 crystallises in the triclinic space group P 1 ¯ with a unit cell volume of V = 1056.6(3) Å3 and with two formula units per unit cell. Whereas BZ6 assembles in the orthorhombic space group Pbca with four formula units per unit cell and a unit cell volume of V = 1354.7(2) Å3. Spectral studies confirmed the presence of amide linkages in the synthesised compound with a strong N—H·····O=C hydrogen bonding network established between amide groups of neighbouring molecular scaffolds further stabilising the molecular stacking in accordance with the archetypal crystal structures. The bioactive nature of each compound was assessed by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity, hydrogen peroxide scavenging activity and total antioxidant activity. Antidiabetic, anticholinesterase enzyme inhibition tests, as well as antibacterial activities, were performed showing significant biological activity for ferrocenyl amides as compared to their organic analogues. Full article
Show Figures

Figure 1

14 pages, 2978 KiB  
Article
Tris(ethylenediamine) Cobalt(II) and Manganese(II) Nitrates
by Miguel Cortijo, Ángela Valentín-Pérez, Mathieu Rouzières, Rodolphe Clérac, Patrick Rosa and Elizabeth A. Hillard
Crystals 2020, 10(6), 472; https://doi.org/10.3390/cryst10060472 - 3 Jun 2020
Cited by 6 | Viewed by 5799
Abstract
Octahedral tris(ethylenediamine) coordination complexes demonstrate helicoidal chirality, due to the arrangement of the ligands around the metal core. The enantiomers of the nitrate salts [Ni(en)3](NO3)2 and [Zn(en)3](NO3)2 spontaneously resolve to form a mixture [...] Read more.
Octahedral tris(ethylenediamine) coordination complexes demonstrate helicoidal chirality, due to the arrangement of the ligands around the metal core. The enantiomers of the nitrate salts [Ni(en)3](NO3)2 and [Zn(en)3](NO3)2 spontaneously resolve to form a mixture of conglomerate crystals, which present a reversible phase transition from space group P6322 to enantiomorphic P6522 or P6122, with the latter depending on the handedness of the enantiomer. We report here the synthesis and characterization of [Mn(en)3](NO3)2 and [Co(en)3](NO3)2, which are isostructural to the Zn(II) and Ni(II) derivatives. The Mn(II) analogue undergoes the same phase transition centered at 150(2) K, as determined by single-crystal X-ray diffraction, Raman spectroscopy, and differential scanning calorimetry. The Co(II) derivative does not demonstrate a phase transition down to 2 K, as evidenced by powder X-ray diffraction and heat capacity measurements. The phase transition does not impact the magnetic properties of the Ni(II) and Mn(II) analogues; these high spin compounds display Curie behavior that is consistent with S = 1 and 5/2, respectively, down to 20 K, while the temperature-dependent magnetic moment for the Co(II) compound reveals a significant orbital contribution. Full article
Show Figures

Graphical abstract

21 pages, 21731 KiB  
Article
Mineral Vesicles and Chemical Gardens from Carbonate-Rich Alkaline Brines of Lake Magadi, Kenya
by Melese Getenet, Juan Manuel García-Ruiz, Cristóbal Verdugo-Escamilla and Isabel Guerra-Tschuschke
Crystals 2020, 10(6), 467; https://doi.org/10.3390/cryst10060467 - 1 Jun 2020
Cited by 11 | Viewed by 4328
Abstract
Mineral vesicles and chemical gardens are self-organized biomimetic structures that form via abiotic mineral precipitation. These membranous structures are known to catalyze prebiotic reactions but the extreme conditions required for their synthesis has cast doubts on their formation in nature. Apart from model [...] Read more.
Mineral vesicles and chemical gardens are self-organized biomimetic structures that form via abiotic mineral precipitation. These membranous structures are known to catalyze prebiotic reactions but the extreme conditions required for their synthesis has cast doubts on their formation in nature. Apart from model solutions, these structures have been shown to form in serpentinization-driven natural silica-rich water and by fluid-rock interaction of model alkaline solutions with granites. Here, for the first time, we demonstrate that self-assembled hollow mineral vesicles and gardens can be synthesized in natural carbonate-rich soda lake water. We have synthesized these structures by a) pouring saturated metal salt solutions, and b) by immersing metal salt pellets in brines collected from Lake Magadi (Kenya). The resulting structures are analyzed by using SEM coupled with EDX analysis, Raman spectroscopy, and powder X-ray diffraction. Our results suggest that mineral self-assembly could have been a common phenomenon in soda oceans of early Earth and Earth-like planets and moons. The composition of the obtained vesicles and gardens confirms the recent observation that carbonate minerals in soda lakes sequestrate Ca, thus leaving phosphate behind in solution available for biochemical reactions. Our results strengthens the proposal that alkaline brines could be ideal sites for “one-pot” synthesis of prebiotic organic compounds and the origin of life. Full article
Show Figures

Graphical abstract

13 pages, 2671 KiB  
Article
Towards an Understanding of Crystallization by Attachment
by Haihua Pan and Ruikang Tang
Crystals 2020, 10(6), 463; https://doi.org/10.3390/cryst10060463 - 1 Jun 2020
Cited by 3 | Viewed by 3174
Abstract
Crystallization via particle attachment was used in a unified model for both classical and non-classical crystallization pathways, which have been widely observed in biomimetic mineralization and geological fields. However, much remains unknown about the detailed processes and driving mechanisms for the attachment. Here, [...] Read more.
Crystallization via particle attachment was used in a unified model for both classical and non-classical crystallization pathways, which have been widely observed in biomimetic mineralization and geological fields. However, much remains unknown about the detailed processes and driving mechanisms for the attachment. Here, we take calcite crystal as a model mineral to investigate the detailed attachment process using in situ Atomic Force Microscopy (AFM) force measurements and molecular dynamics simulations. The results show that hydration layers hinder the attachment; however, in supersaturated solutions, ionic bridges are formed between crystal gaps as a result of capillary condensation, which might enhance the aggregation of calcite crystals. These findings provide a more detailed understanding of the crystal attachment, which is of vital importance for a better understanding of mineral formation under biological and geological environments with a wide range of chemical and physical conditions. Full article
Show Figures

Figure 1

7 pages, 270 KiB  
Article
A Simple Method for Photoconductivity Measurement in Lithium Niobate
by Marco Bazzan, Laurent Guilbert and Michel Aillerie
Crystals 2020, 10(6), 461; https://doi.org/10.3390/cryst10060461 - 1 Jun 2020
Viewed by 1969
Abstract
A simple and effective technique to characterize the photoconductivity (PC) of lithium niobate is presented. The technique is based on the modulation of the external field and on the observation of the optical response of the material as a function of the intensity [...] Read more.
A simple and effective technique to characterize the photoconductivity (PC) of lithium niobate is presented. The technique is based on the modulation of the external field and on the observation of the optical response of the material as a function of the intensity of a gaussian beam using a Tardy’s polarimetric setup in the r 22 configuration. When the temporal period of the modulation is larger than the Maxwell time of the material, the effect of the PC can be detected observing the kinetics of the screening effect of the external applied field. This approach allows measuring a wide dynamic range up to high light intensities with good accuracy using a standard oscilloscope and with no need for charge collection electrodes. The technique is demonstrated by comparing two samples, the first possessing a standard congruent composition, the second being doped with Zn in order to boost the PC. Full article
Show Figures

Figure 1

13 pages, 2675 KiB  
Article
Hydrogen Bonds with BF4 Anion as a Proton Acceptor
by Sławomir J. Grabowski
Crystals 2020, 10(6), 460; https://doi.org/10.3390/cryst10060460 - 1 Jun 2020
Cited by 26 | Viewed by 4767
Abstract
The BF4 anion is characterised by weak Lewis base properties; it is usually classified as a “non-coordinating anion”. The searches through the Cambridge Structural Database (CSD) were performed and it was found that the BF4 anion often occurs in [...] Read more.
The BF4 anion is characterised by weak Lewis base properties; it is usually classified as a “non-coordinating anion”. The searches through the Cambridge Structural Database (CSD) were performed and it was found that the BF4 anion often occurs in crystal structures and it is involved in numerous intermolecular interactions; hydrogen bonds are the majority of them. The hydrogen bonds involving the BF4 anion as a proton acceptor are closer to linearity with the increase of the strength of interaction that is in line with the tendency known for other hydrogen bonds. However, even for short contacts between the proton and the Lewis base centre, slight deviations from linearity occur. The MP2/aug-cc-pVTZ calculations on the BF4…HCN complex and on the BF4…(HCN)4 cluster were also carried out to characterise corresponding C-H…F hydrogen bonds; such interactions often occur in crystal structures. Full article
Show Figures

Figure 1

16 pages, 5277 KiB  
Article
Effect of Chitosan Electrospun Fiber Mesh as Template on the Crystallization of Calcium Oxalate
by Nicole Butto, Nicole Cotrina Vera, Felipe Díaz-Soler, Mehrdad Yazdani-Pedram and Andrónico Neira-Carrillo
Crystals 2020, 10(6), 453; https://doi.org/10.3390/cryst10060453 - 31 May 2020
Cited by 8 | Viewed by 2543
Abstract
Biominerals fulfill various physiological functions in living organisms, however, pathological mineralization can also occur generating mineral pathologies such as the formation of calcium oxalate (CaOx) calculi in the urinary tract. Inspired by the ability of living organisms to generate biogenic minerals using biological [...] Read more.
Biominerals fulfill various physiological functions in living organisms, however, pathological mineralization can also occur generating mineral pathologies such as the formation of calcium oxalate (CaOx) calculi in the urinary tract. Inspired by the ability of living organisms to generate biogenic minerals using biological organic matrices, and the need to understand the mechanisms of crystallization, three-dimensional fibrillary meshes based on chitosan fibers with random and controlled topology by electrospinning were manufactured. Chitosan was selected due to its active role on in vitro crystallization and its physicochemical properties, which allows the exposure of their functional chemical groups that could selectively stabilize hydrated crystalline forms of CaOx. CaOx crystals were generated on conductive tin indium oxide (ITO) glass substrates modified with electrospun chitosan fibers by using electrocrystallization (EC) technique. The chitosan fibers and the resulting CaOx crystals were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques, which demonstrated that the chemical nature and topology of the three-dimensional fibers used as organic template are key factors in the control of type, morphology, and crystallographic orientation of CaOx. Full article
Show Figures

Figure 1

10 pages, 1826 KiB  
Article
Ultrahigh Electromechanical Coupling and Its Thermal Stability in (Na1/2Bi1/2)TiO3-Based Lead-Free Single Crystals
by Chao Chen, Li Yang, Xingan Jiang, Xiaokun Huang, Xiaoyi Gao, Na Tu, Kaizheng Shu, Xiangping Jiang, Shujun Zhang and Haosu Luo
Crystals 2020, 10(6), 435; https://doi.org/10.3390/cryst10060435 - 29 May 2020
Cited by 6 | Viewed by 2164
Abstract
In this work, we report the ultrahigh electromechanical coupling performance of NBT-6BT-KNN lead-free single crystal at room temperature. The thickness mode electromechanical coupling coefficient (kt) and the 31 mode electromechanical coupling coefficient (k31) reach 69.0% and 45.7%, [...] Read more.
In this work, we report the ultrahigh electromechanical coupling performance of NBT-6BT-KNN lead-free single crystal at room temperature. The thickness mode electromechanical coupling coefficient (kt) and the 31 mode electromechanical coupling coefficient (k31) reach 69.0% and 45.7%, respectively, which are superior to the PZT-5H lead-based ceramics of kt~60% and k31~39%. In addition, the evolution of the crystal structure and domain morphology is revealed by Raman scattering spectra, a polarizing microscope and piezoelectric force microscopy characterization. Full article
Show Figures

Figure 1

12 pages, 2909 KiB  
Article
Origin of Structural Change Driven by A-Site Lanthanide Doping in ABO3-Type Perovskite Ferroelectrics
by Lan Xu, Zujian Wang, Bin Su, Chenxi Wang, Xiaoming Yang, Rongbing Su, Xifa Long and Chao He
Crystals 2020, 10(6), 434; https://doi.org/10.3390/cryst10060434 - 29 May 2020
Cited by 15 | Viewed by 3057
Abstract
Lanthanide doping is widely employed to tune structural change temperature and electrical properties in ABO3-type perovskite ferroelectric materials. However, the reason that A-site lanthanide doping leads to the decrease of the Curie temperature is still not clear. Based on the reported [...] Read more.
Lanthanide doping is widely employed to tune structural change temperature and electrical properties in ABO3-type perovskite ferroelectric materials. However, the reason that A-site lanthanide doping leads to the decrease of the Curie temperature is still not clear. Based on the reported Curie temperature of lanthanides (Ln) doped in two classic ferroelectrics PbTiO3 and BaTiO3 with A2+B4+O3-type perovskite structure, we discussed the relationship between the decrease rate of Curie temperature (ΔTC) and the bond strength variance of A-site cation (σ). For Nd ion doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Nd-PMNT) ferroelectric crystal as an example, the internal factors of the dramatic decline of the Curie temperature induced by A-site Nd doping were investigated under a systematic study. The strong covalent bonds of Ln-O play an important role in A-site Ln composition-induced structural change from ferroelectric to paraelectric phase, and it is responsible for the significant decrease in the Curie temperature. It is proposed that the cells become cubic around the Ln ions due to the strong covalent energy of Ln-O bonding in A-site Ln doped A2+B4+O3 perovskite ferroelectrics. Full article
Show Figures

Figure 1

12 pages, 3618 KiB  
Article
The Effect of Printing Parameters on Electrical Conductivity and Mechanical Properties of PLA and ABS Based Carbon Composites in Additive Manufacturing of Upper Limb Prosthetics
by Attila Pentek, Miklos Nyitrai, Adam Schiffer, Hajnalka Abraham, Matyas Bene, Emese Molnar, Roland Told and Peter Maroti
Crystals 2020, 10(5), 398; https://doi.org/10.3390/cryst10050398 - 15 May 2020
Cited by 21 | Viewed by 4518
Abstract
Additive manufacturing technologies are dynamically developing, strongly affecting almost all fields of industry and medicine. The appearance of electrically conductive polymers has had a great impact on the prototyping process of different electrical components in the case of upper limb prosthetic development. The [...] Read more.
Additive manufacturing technologies are dynamically developing, strongly affecting almost all fields of industry and medicine. The appearance of electrically conductive polymers has had a great impact on the prototyping process of different electrical components in the case of upper limb prosthetic development. The widely used FFF 3D printing technology mainly uses PLA (polylactic acid) and ABS (acrylonitrile butadiene styrene) based composites, and despite their presence in the field, a detailed, critical characterization and comparison of them has not been performed yet. Our aim was to characterize two PLA and ABS based carbon composites in terms of electrical and mechanical behavior, and extend the observations with a structural and signal transfer analysis. The measurements were carried out by changing the different printing parameters, including layer resolution, printing orientation and infill density. To determine the mechanical properties, static and dynamic tests were conducted. The electrical characterization was done by measuring the resistance and signal transfer characteristics. Scanning electron microscopy was used for the structural analysis. The results proved that the printing parameters had a significant effect on the mechanical and electrical characteristics of both materials. As a major novelty, it was concluded that the ABS carbon composite has more favorable behavior in the case of additive manufacturing of electrical components of upper limb prosthetics, and they can be used as moving, rotating parts as well. Full article
Show Figures

Figure 1

12 pages, 2757 KiB  
Article
Microstructure and Mechanical Properties of an Austenitic CrMnNiMoN Spring Steel Strip with a Reduced Ni Content
by Christina Schröder, Marco Wendler, Olena Volkova and Andreas Weiß
Crystals 2020, 10(5), 392; https://doi.org/10.3390/cryst10050392 - 12 May 2020
Cited by 3 | Viewed by 2931
Abstract
The article presents the mechanical properties of the austenitic stainless steel X5CrMnNiMoN16-4-4 after deformation by cold rolling and subsequent short-term tempering (deformation and partitioning (D&P) treatment). Tensile strengths of 1700–900 MPa and beyond were achieved both after work hardening and in the D&P-treated [...] Read more.
The article presents the mechanical properties of the austenitic stainless steel X5CrMnNiMoN16-4-4 after deformation by cold rolling and subsequent short-term tempering (deformation and partitioning (D&P) treatment). Tensile strengths of 1700–900 MPa and beyond were achieved both after work hardening and in the D&P-treated strip. The initial state of austenite in terms of grain size and pre-strengthening, as well as the selected cold rolling temperature significantly influenced the deformation-induced formation of α’ martensite and thus the flow and hardening behavior of the steel. The usage of two different rolling temperature regimes showed that the strength properties in the cold strip can be specifically adjusted. Lower deformation-induced martensite fractions enabled a larger thickness reduction of the strip without increasing the rolling force, while high deformation-induced martensite fractions led to strong hardening at low deformation levels. The D&P-treatment permits the strength of the cold-rolled strip with a predominantly austenitic microstructure to be increased to the required level. The total elongation of such a D&P strip was well over 2%. The D&P treatment of the spring steel strip is a cost-effective alternative to conventional tempering treatment. Full article
Show Figures

Figure 1

16 pages, 3563 KiB  
Article
Novel Cd (II) Coordination Polymers Afforded with EDTA or Trans-1,2-Cdta Chelators and Imidazole, Adenine, or 9-(2-Hydroxyethyl) Adenine Coligands
by Jeannette Carolina Belmont-Sánchez, María Eugenia García-Rubiño, Antonio Frontera, Antonio Matilla-Hernández, Alfonso Castiñeiras and Juan Niclós-Gutiérrez
Crystals 2020, 10(5), 391; https://doi.org/10.3390/cryst10050391 - 11 May 2020
Cited by 3 | Viewed by 2659
Abstract
Three mixed-ligands of Cd(II) coordination polymers were unintentionally obtained: {[Cd(µ3-EDTA)(Him)·Cd(Him)(H2O)2]·H2O}n (1), {[Cd(µ4-CDTA)(Hade)·Cd(Hade)2]}n (2), and {[Cd(µ3-EDTA)(H2O)·Cd(H9heade)(H2O)]·2H2O}n ( [...] Read more.
Three mixed-ligands of Cd(II) coordination polymers were unintentionally obtained: {[Cd(µ3-EDTA)(Him)·Cd(Him)(H2O)2]·H2O}n (1), {[Cd(µ4-CDTA)(Hade)·Cd(Hade)2]}n (2), and {[Cd(µ3-EDTA)(H2O)·Cd(H9heade)(H2O)]·2H2O}n (3), having imidazole (Him), adenine (Hade) or 9-(2-hydroxyethyl)adenine (9heade) as the N-heterocyclic coligands. Compounds 2 and 3 were obtained by working with an excess of corresponding N-heterocyclic coligands. The single-crystal X-ray diffraction structures and thermogravimetric analyses are reported. The chelate moieties in all three compounds exhibit hepta-coordinated Cd centers, whereas the non-chelated Cd center is five-coordinated in 1 and six-coordinated in 2 and 3. Him and Hade take part in the seven-coordinated chelate moieties in 1 and 2, respectively. In contrast, 9heade is unable to replace the aqua ligand of the chelate [Cd (EDTA) (H2O)] moiety in 3. The thermogravimetric analysis (TGA) behavior of [Cd (H2EDTA) (H2O)]·2H2O in 1 and 3 leads to a residue of CdO, whereas the N-rich compound 2 yields CdO·Cd(NO3)2 as a residue. Density functional theory (DFT) calculations along with molecular electrostatic potential (MEP) and quantum theory of atoms-in-molecules computations were performed in adenine (compound 2) and (2-hydroxyethyl)adenine (compound 3) to analyze how the strength of the H-bonding and π-stacking interactions, respectively, are affected by their coordination to the Cd-metal center. Full article
Show Figures

Graphical abstract

14 pages, 2940 KiB  
Article
Formation of Nanoclusters in Gold Nucleation
by Cornelia M. Schneider and Helmut Cölfen
Crystals 2020, 10(5), 382; https://doi.org/10.3390/cryst10050382 - 8 May 2020
Cited by 6 | Viewed by 3553
Abstract
Gold nanoclusters consisting of a specific atom number have gained popularity in research in recent years due to their outstanding properties. Due to their molecule-like behavior, their properties depend strongly on their size. Although they represent the link species between atoms and nanoparticles [...] Read more.
Gold nanoclusters consisting of a specific atom number have gained popularity in research in recent years due to their outstanding properties. Due to their molecule-like behavior, their properties depend strongly on their size. Although they represent the link species between atoms and nanoparticles and are the subject of current research, a high-resolution characterization is still missing. Here, we used the band forming experiment in analytical ultracentrifugation (AUC) to characterize the gold nanoclusters in the moment of their generation using thioglycerol as a stabilizer. The concentration variation of the gold precursor, reducing agent, and stabilizer was investigated. The formation of different cluster species from the smallest Au4 up to Au911 could be observed. Very stable clusters of Au55 appear in every experiment and other cluster sizes more rarely. The extracted UV/Vis spectra could additionally be correlated to every cluster. The variation in the concentration of sodium borohydride and the stabilizer did not lead to a clear trend, but the gold ion concentration directed the size of the formed clusters. A decrease seemed to promote the generation of a higher abundance of smaller clusters accompanied by less big clusters, and vice versa. These results present the characterization of the different nanocluster generations directly in the formation process of nanoparticles and therefore are a contribution to the understanding of their formation. Full article
Show Figures

Graphical abstract

10 pages, 4461 KiB  
Article
Impact of Phase Structure on Piezoelectric Properties of Textured Lead-Free Ceramics
by Xiaoyi Gao, Nannan Dong, Fangquan Xia, Qinghu Guo, Hua Hao, Hanxing Liu and Shujun Zhang
Crystals 2020, 10(5), 367; https://doi.org/10.3390/cryst10050367 - 3 May 2020
Cited by 11 | Viewed by 3263
Abstract
The impact of phase structure on piezoelectric performances of <001> textured Na0.5Bi0.5TiO3 (NBT) based lead-free ceramics was studied, including 0.88NBT-0.08K0.5Bi0.5TiO3-0.04BaTiO3 (88NBT) with morphotropic phase boundary (MPB) composition and 0.90NBT-0.07K0.5Bi [...] Read more.
The impact of phase structure on piezoelectric performances of <001> textured Na0.5Bi0.5TiO3 (NBT) based lead-free ceramics was studied, including 0.88NBT-0.08K0.5Bi0.5TiO3-0.04BaTiO3 (88NBT) with morphotropic phase boundary (MPB) composition and 0.90NBT-0.07K0.5Bi0.5TiO3-0.03BaTiO3 (90NBT) with rhombohedral phase. Both textured ceramics exhibit a high Lotgering factor, being on the order of f~96%. The piezoelectric coefficients of the textured 88NBT and 90NBT ceramics are increased by 20% and 60%, respectively, comparing to their randomly oriented ceramics. The piezoelectric enhancement of 90NBT textured ceramic is three times higher than 88NBT, revealing the phase structure plays a significant role in enhancing the piezoelectric performances of textured ceramics. Of particular significance is that the 90NBT textured ceramic exhibits almost hysteresis-free strain behavior. The enhanced piezoelectric property with minimal strain hysteresis is attributed to the <001> poled rhombohedral engineered domain configuration. Full article
Show Figures

Figure 1

14 pages, 2579 KiB  
Article
Computational Investigation of the Folded and Unfolded Band Structure and Structural and Optical Properties of CsPb(I1−xBrx)3 Perovskites
by Hamid M. Ghaithan, Zeyad A. Alahmed, Andreas Lyras, Saif M. H. Qaid and Abdullah S. Aldwayyan
Crystals 2020, 10(5), 342; https://doi.org/10.3390/cryst10050342 - 27 Apr 2020
Cited by 11 | Viewed by 4693
Abstract
The structural, electronic, and optical properties of inorganic CsPb(I1−xBrx)3 compounds were investigated using the full-potential linear augmented-plane wave (FP-LAPW) scheme with a generalized gradient approximation (GGA). Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) and modified Becke–Johnson GGA (mBJ-GGA) potentials were [...] Read more.
The structural, electronic, and optical properties of inorganic CsPb(I1−xBrx)3 compounds were investigated using the full-potential linear augmented-plane wave (FP-LAPW) scheme with a generalized gradient approximation (GGA). Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) and modified Becke–Johnson GGA (mBJ-GGA) potentials were used to study the electronic and optical properties. The band gaps calculated using the mBJ-GGA method gave the best agreement with experimentally reported values. CsPb(I1−xBrx)3 compounds were wide and direct band gap semiconductors, with a band gap located at the M point. The spectral weight (SW) approach was used to unfold the band structure. By substituting iodide with bromide, an increase in the band gap energy (Eg) values of 0.30 and 0.55 eV, using PBE-GGA and mBJ-GGA potentials, respectively, was observed, whereas the optical property parameters, which were also investigated, demonstrated the reverse effect. The high absorption spectra in the ultraviolet−visible energy range demonstrated that CsPb(I1−xBrx)3 perovskite could be used in optical and optoelectronic devices by partly replacing iodide with bromide. Full article
Show Figures

Figure 1

11 pages, 2475 KiB  
Article
Optical and Thermoelectric Properties of Surface-Oxidation Sensitive Layered Zirconium Dichalcogenides ZrS2−xSex (x = 0, 1, 2) Crystals Grown by Chemical Vapor Transport
by Thalita Maysha Herninda and Ching-Hwa Ho
Crystals 2020, 10(4), 327; https://doi.org/10.3390/cryst10040327 - 22 Apr 2020
Cited by 21 | Viewed by 3937
Abstract
In this work, structure, optical, and thermoelectric properties of layered ZrS2−xSex single crystals with selenium composition of x = 0, 1, and 2 were examined. Single crystals of zirconium dichalcogenides layer compounds were grown by chemical vapor transport method using [...] Read more.
In this work, structure, optical, and thermoelectric properties of layered ZrS2−xSex single crystals with selenium composition of x = 0, 1, and 2 were examined. Single crystals of zirconium dichalcogenides layer compounds were grown by chemical vapor transport method using I2 as the transport agent. X-ray diffraction (XRD) and high-resolution transmission electron microscope (HRTEM) results indicated that ZrS2−xSex (x = 0, 1, and 2) were crystalized in hexagonal CdI2 structure with one-layer trigonal (1T) stacking type. X-ray photoelectron and energy dispersive X-ray measurements revealed oxidation sensitive behavior of the chalcogenides series. Transmittance and optical absorption showed an indirect optical gap of about 1.78 eV, 1.32 eV, and 1.12 eV for the ZrS2−xSex with x = 0, 1, and 2, respectively. From the result of thermoelectric experiment, ZrSe2 owns the highest figure-of merit (ZT) of ~0.085 among the surface-oxidized ZrS2−xSex series layer crystals at 300 K. The ZT values of the ZrS2−xSex (x = 0, 1, and 2) series also reveal increase with the increase of Se content owing to the increase of carrier concentration and mobility in the highly Se-incorporated zirconium dichalcogenides with surface states. Full article
Show Figures

Graphical abstract

12 pages, 4039 KiB  
Article
Single-Crystal 31P and 7Li NMR of the Ionic Conductor LiH2PO4
by Otto E. O. Zeman, Viktoria Kainz and Thomas Bräuniger
Crystals 2020, 10(4), 302; https://doi.org/10.3390/cryst10040302 - 15 Apr 2020
Cited by 1 | Viewed by 3953
Abstract
The electronic surroundings of phosphorus and lithium atoms in the ionic conductor lithium dihydrogen phosphate (LDP) have been studied by single-crystal nuclear magnetic resonance (NMR) spectroscopy at room temperature. From orientation-dependent NMR spectra of a large homegrown LDP single crystal, the full 31 [...] Read more.
The electronic surroundings of phosphorus and lithium atoms in the ionic conductor lithium dihydrogen phosphate (LDP) have been studied by single-crystal nuclear magnetic resonance (NMR) spectroscopy at room temperature. From orientation-dependent NMR spectra of a large homegrown LDP single crystal, the full 31P chemical shift (CS) and 7Li quadrupole coupling (QC) tensor was determined, using a global fit over three rotation patterns. The resulting CS tensor is characterized by its three eigenvalues: δ 11 P A S = ( 67.0 ± 0.6 ) ppm, δ 22 P A S = ( 13.9 ± 1.5 ) ppm, and δ 33 P A S = ( 78.7 ± 0.9 ) ppm. All eigenvalues have also been verified by magic-angle spinning NMR on a polycrystalline sample, using Herzfeld–Berger analysis of the rotational side band pattern. The resulting 7Li QC tensor is characterized by its quadrupolar coupling constant χ = Q 33 P A S = ( 71 ± 1 ) kHz and the two eigenvalues Q 11 P A S = ( 22.3 ± 0.9 ) kHz, and Q 22 P A S = ( 48.4 ± 0.8 ) kHz. The initially unknown orientation of the mounted crystal, expressed by the orientation of the rotation axis in the orthorhombic crystal frame, was included in the global data fit as well, thus obtaining it from NMR data only. Full article
Show Figures

Graphical abstract