Synthesis and Applications of Bioactive Coatings

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Bioactive Coatings and Biointerfaces".

Deadline for manuscript submissions: 10 January 2026 | Viewed by 4665

Special Issue Editor


E-Mail Website
Guest Editor
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
Interests: bioactive coatings

Special Issue Information

Dear Colleagues,

Bioactive coatings have emerged as a significant area of interest within the realm of materials science and biotechnology. These specialized coatings are designed to interact with biological systems to promote specific biological responses at the interface between the material and the biological environment. Commonly used in medical implants, these coatings aim to improve biocompatibility, prevent infection, and enhance integration with surrounding tissues. As research in this field continues to advance, bioactive coatings stand poised to make a substantial impact on diverse industries, offering innovative solutions for improved human health and well-being.

The Special Issue "Synthesis and Applications of Bioactive Coatings" delves into the cutting-edge realm of material science, focusing on the development and utilization of bioactive coatings. This collection of research articles and reviews offers a comprehensive exploration of the synthesis processes, properties, and diverse applications of these innovative coatings. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Novel Synthesis Techniques for Bioactive Coatings;
  • Characterization and Properties of Bioactive Coatings;
  • Medical Applications and Biocompatibility Assessment;
  • Bioactive Coatings in Tissue Engineering;
  • Environmental and Industrial Applications.

We look forward to receiving your contributions.

Dr. Shenglian Yao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • novel synthesis techniques for bioactive coatings
  • characterization and properties of bioactive coatings
  • medical applications and biocompatibility assessment
  • bioactive coatings in tissue engineering
  • environmental and industrial applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 5061 KiB  
Article
Bioactive Hydroxyapatite–Carboplatin–Quercetin Coatings for Enhanced Osteointegration and Antitumoral Protection in Hip Endoprostheses
by Gheorghe Iosub, Dana-Ionela Tudorache (Trifa), Ionuț Marinel Iova, Liviu Duta, Valentina Grumezescu, Alexandra Cătălina Bîrcă, Adelina-Gabriela Niculescu, Paul Cătălin Balaure, Ionela Cristina Voinea, Miruna S. Stan, Dragoș Mihai Rădulescu, Adrian Emilian Bădilă, Bogdan Ștefan Vasile, Alexandru Mihai Grumezescu and Adrian Radu Rădulescu
Coatings 2025, 15(4), 489; https://doi.org/10.3390/coatings15040489 - 20 Apr 2025
Viewed by 264
Abstract
The recurrence of bone cancer poses severe complications, particularly after orthopedic surgery, necessitating advanced biomaterials with dual functionality. This study develops nanostructured coatings composed of hydroxyapatite, carboplatin, and quercetin, designed to enhance bone regeneration while delivering localized cancer therapy. These coatings present a [...] Read more.
The recurrence of bone cancer poses severe complications, particularly after orthopedic surgery, necessitating advanced biomaterials with dual functionality. This study develops nanostructured coatings composed of hydroxyapatite, carboplatin, and quercetin, designed to enhance bone regeneration while delivering localized cancer therapy. These coatings present a promising solution for hip endoprostheses, addressing osteointegration and tumor recurrence prevention simultaneously. Hydroxyapatite was synthesized and characterized using XRD, TEM, SAED, FTIR, and SEM to assess crystallinity, surface morphology, and functional groups. The coatings were obtained by MAPLE. In vitro biocompatibility tests showed that HAp@CPT and HAp@CPT/QUE coatings supported osteoblast viability and adhesion while exhibiting selective cytotoxic effects on osteosarcoma cells. The Griess assay indicated that nitric oxide (NO) levels remained unchanged in hFOB osteoblasts, confirming that neither coating induced inflammatory responses in healthy cells. In contrast, MG63 osteosarcoma cells exhibited significantly elevated NO levels (p < 0.05) in response to HAp@CPT/QUE, suggesting increased oxidative stress. MTT assay results showed a 12% and 28% reduction in osteosarcoma cell viability for HAp@CPT and HAp@CPT/QUE, respectively. Phase-contrast microscopy further confirmed strong osteoblast adhesion and reduced osteosarcoma attachment, particularly on HAp@CPT/QUE surfaces. These findings highlight the dual functionality of hydroxyapatite–carboplatin–quercetin coatings, promoting osteointegration while exerting localized anticancer effects. Their bone-regenerative and selective cytotoxic properties make them a promising material for hip endoprostheses in oncological orthopedic applications. Full article
(This article belongs to the Special Issue Synthesis and Applications of Bioactive Coatings)
Show Figures

Figure 1

12 pages, 2901 KiB  
Article
Development of a Bioactive Titanium Surface via Alkalinization and Naringenin Coating for Peri-Implant Repair: In Vitro Study
by Isabela Massaro Ribeiro, Lais Medeiros Cardoso, Taisa Nogueira Pansani, Ana Carolina Chagas, Carlos Alberto de Souza Costa and Fernanda Gonçalves Basso
Coatings 2024, 14(10), 1303; https://doi.org/10.3390/coatings14101303 - 12 Oct 2024
Viewed by 918
Abstract
This study assessed the effects of titanium (Ti) surface modification with sodium hydroxide (NaOH) associated or not with Naringenin (NA) citrus flavonoid-coating on osteoblastic-like cells (Ob) metabolism. Ti discs were submitted to alkalinization by NaOH solution (5 M, 60 °C) for 24 h; [...] Read more.
This study assessed the effects of titanium (Ti) surface modification with sodium hydroxide (NaOH) associated or not with Naringenin (NA) citrus flavonoid-coating on osteoblastic-like cells (Ob) metabolism. Ti discs were submitted to alkalinization by NaOH solution (5 M, 60 °C) for 24 h; then, the discs were impregnated or not with 100 µg/mL of NA and dried for 1 h at room temperature. The chemical composition, surface topography, and NA release were evaluated. For the biological assays, the discs were placed on 24-well cell culture plates and Ob (Saos-2; ATCC HTB-85) was seeded onto the discs. After different periods, cell adhesion and viability, alkaline phosphatase activity (ALP), and mineralized nodules deposition (MND) were assessed. In addition, cells stimulated with tumor necrosis factor-alpha (TNF-α) were submitted to matrix metalloproteinase (MMP)-2 synthesis and ALP gene expression assessment. Since data presented normal distribution and homogeneity (Shapiro-Wilk; Levene), Student’s t-test or one-way ANOVA/post-hoc tests were selected for data analysis (α = 0.05). Higher roughness was observed on Ti discs submitted to NaOH treatment, while the chemical and NA release evaluations indicated the successful adsorption of NA to alkali-treated Ti surface. Higher cell adhesion, cell viability (after 7 days of culture), ALP activity, and MND were observed on Ti NaOH coated with NA compared to the control group (Ti NaOH) (p < 0.05). Moreover, NA coating also promoted decreased MMP-2 synthesis and increased ALP gene expression in the presence of the inflammatory stimulus TNF-α (p < 0.05). The modification of Ti disks with NaOH associated with NA-coating enhanced bone cell metabolism, suggesting that this type of surface modification has a promising potential to accelerate bone repair and formation around dental implants. Full article
(This article belongs to the Special Issue Synthesis and Applications of Bioactive Coatings)
Show Figures

Figure 1

13 pages, 11023 KiB  
Article
Antibacterial Activity of Superhydrophobic-SiO2 Coatings to Inhibit the Growth of Escherichia coli and Staphylococcus aureus
by Betania Sánchez-Santamaria, Delfino Cornejo-Monroy, Imelda Olivas-Armendáriz, José Saúl Arias-Cerón, Alfredo Villanueva-Montellano, Elsa Ordoñez-Casanova, José Omar Dávalos-Ramírez, Erwin Adán Martínez-Gómez and Jesús Manuel Jaquez-Muñoz
Coatings 2024, 14(9), 1211; https://doi.org/10.3390/coatings14091211 - 20 Sep 2024
Viewed by 1990
Abstract
The emergence of superhydrophobic antibacterial materials represents a promising approach to maintaining surface cleanliness and hygiene by effectively preventing bacterial adhesion. This research outlines the synthesis of a superhydrophobic coating with anti-adhesion and bacteriostatic properties, utilizing silica nanoparticles (SiO2 NPs) modified with [...] Read more.
The emergence of superhydrophobic antibacterial materials represents a promising approach to maintaining surface cleanliness and hygiene by effectively preventing bacterial adhesion. This research outlines the synthesis of a superhydrophobic coating with anti-adhesion and bacteriostatic properties, utilizing silica nanoparticles (SiO2 NPs) modified with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (PFDTES). Transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy were conducted to analyze the coating’s morphology and surface characteristics. The coating was applied to glass substrates using the spray coating method, and the number of layers was varied to evaluate its antibacterial and bacteriostatic properties. These properties were measured using turbidimetry and inhibition halo techniques. Additionally, the durability of the coatings was assessed by exposing them to outdoor conditions for 35 days. This study aimed to evaluate the antibacterial and bacteriostatic capacities of the superhydrophobic coating, along with its resistance to outdoor weathering. The results indicate that a superhydrophobic coating with a contact angle ≥ 150° and a sliding angle ≤ 10° was successfully synthesized using SiO2 NPs smaller than 10 nm, modified with PFDTES. The coating demonstrated an ability to inhibit bacterial growth by preventing the adhesion of bacteria such as Escherichia coli and Staphylococcus aureus. Furthermore, the number of coating layers significantly influenced its bacteriostatic efficacy. The coating also exhibited strong durability under outdoor conditions. These findings highlight the potential application of superhydrophobic coatings for the prevention of bacterial adhesion and growth in environments where such contamination poses risks. Full article
(This article belongs to the Special Issue Synthesis and Applications of Bioactive Coatings)
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 11808 KiB  
Review
Surface Engineering of Biodegradable Magnesium Alloys as Orthopedic Implant Materials: Recent Developments and Future Prospects
by Hualong Chen, Yu Wang, Liang He, Xiaoyi Zhang, Yanan Mei, Tong Wu, Jia Wang, Yu Zheng and Hui Tang
Coatings 2025, 15(2), 191; https://doi.org/10.3390/coatings15020191 - 6 Feb 2025
Viewed by 1115
Abstract
Magnesium and its alloys are widely used for bone fixation and repair due to their biodegradability. However, their application is limited due to their poor corrosion resistance and rapid degradation rate in the human body. Surface engineering represents an effective approach to modifying [...] Read more.
Magnesium and its alloys are widely used for bone fixation and repair due to their biodegradability. However, their application is limited due to their poor corrosion resistance and rapid degradation rate in the human body. Surface engineering represents an effective approach to modifying the degradation characteristics of magnesium alloys to meet the requirements of biological systems. Constructing bioactive coatings on the surface of substrates is essential to improve their biocompatibility and corrosion resistance, representing an effective method of surface modification. This review summarizes the current research on the construction of bioactive coatings on magnesium and its alloys, including inorganic coatings, polymer coatings, and composite coatings, which presents an analysis of their respective research statuses. Furthermore, this review discusses the future developments of biodegradable magnesium and its alloy systems, focusing on achieving satisfactory specifications for clinical trials and implementation. Its goal is to provide critical insights to materials scientists and clinical practitioners involved in the development of applicable biodegradable magnesium alloys. Full article
(This article belongs to the Special Issue Synthesis and Applications of Bioactive Coatings)
Show Figures

Figure 1

Back to TopTop