The Endothelial Cell in Lung Inflammation

A topical collection in Cells (ISSN 2073-4409). This collection belongs to the section "Tissues and Organs".

Viewed by 58982

Editor


E-Mail Website
Collection Editor
School of Medicine, University of Maryland, Baltimore, MD, USA
Interests: cellular mechanisms of lung injury; endothelial permeability; mechanisms of lung recovery; mechanotransduction; oxidized phospholipids in lung disease

Topical Collection Information

Dear Colleagues,

The current COVID-19 pandemic has placed unprecedented emphasis on better understanding the molecular mechanisms driving lung injury, a major determinant of COVID-19-related morbidity and mortality. Increased lung capillary endothelial permeability along with reduced alveolar liquid clearance capacity are major pathologic mechanisms of pulmonary edema and its life-threatening complication, the acute respiratory distress syndrome (ARDS). In addition to its well-documented role in COVID-19, ARDS is also common in other life-threatening conditions such as bacterial pneumonia, ventilator-induced lung injury, sepsis, polytrauma, chemical lung injury, etc. Thus, proper control of lung barrier function and innate immunity aided by better understanding of underlying genetic variances, ARDS-associated epigenetic alterations and interactions between endothelial, lung epithelial, and immune cells is key to developing new therapeutic approaches promoting recovery of endothelial barrier, normal lung function, and improvement of patient survival.

This Topical Collection on “The Endothelial Cell in Lung Inflammation” will showcase latest developments by leading research and clinical groups across the nation that shed the light on the complex roles of lung vascular endothelium in pathophysiology of ARDS and lung recovery. I invite topic reviews as well as full size research papers to compile this timely and important journal issue. 

I look forward to your prominent contributions.

Prof. Dr. Konstantin G Birukov
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Endothelial permeability and inflammation
  • Pulmonary edema
  • ARDS
  • Pulmonary Infection
  • Lung injury
  • Protective strategies
  • Cytoskeleton
  • Signal transduction
  • Endothelial heterogeneity in ALI
  • Genetics and Epigenetics
  • Genomics and Proteomics
  • Inflammatory cells and mediators

Published Papers (16 papers)

2023

Jump to: 2021

19 pages, 2964 KiB  
Article
Aging-Related Accumulation of Truncated Oxidized Phospholipids Augments Infectious Lung Injury and Endothelial Dysfunction via Cluster of Differentiation 36-Dependent Mechanism
by Yunbo Ke, Pratap Karki, Yue Li, Kamoltip Promnares, Chen-Ou Zhang, Thomas L. Eggerman, Alexander V. Bocharov, Anna A. Birukova and Konstantin G. Birukov
Cells 2023, 12(15), 1937; https://doi.org/10.3390/cells12151937 - 26 Jul 2023
Cited by 1 | Viewed by 1259
Abstract
Truncated phospholipid oxidation products (Tr-OxPL) increase in blood circulation with aging; however, their role in the severity of vascular dysfunction and bacterial lung injury in aging groups remains poorly understood. We investigated the effects of six Tr-OxPL species: KOdiA-PC, POVPC, PONPC, PGPC, Paz-PC, [...] Read more.
Truncated phospholipid oxidation products (Tr-OxPL) increase in blood circulation with aging; however, their role in the severity of vascular dysfunction and bacterial lung injury in aging groups remains poorly understood. We investigated the effects of six Tr-OxPL species: KOdiA-PC, POVPC, PONPC, PGPC, Paz-PC, and Lyso-PC on endothelial dysfunction and lung inflammation caused by heat-killed Staphylococcus aureus (HKSA) in young (aged 2–4 months) and old (aged 12–18 months) mice, organotypic culture of precisely cut lung slices, and endothelial cells (mLEC) isolated from young and old mice. HKSA and Tr-OxPL combination caused a higher degree of vascular leak, the accumulation of inflammatory cells and protein in bronchoalveolar lavage, and inflammatory gene expression in old mice lungs. HKSA caused a greater magnitude of inflammatory gene activation in cell and ex vivo cultures from old mice, which was further augmented by Tr-OxPLs. L37pA peptide targeting CD36 receptor attenuated Tr-OxPL-induced endothelial cell permeability in young and old mLEC and ameliorated KOdiA-PC-induced vascular leak and lung inflammation in vivo. Finally, CD36 knockout mice showed better resistance to KOdiA-PC-induced lung injury in both age groups. These results demonstrate the aging-dependent vulnerability of pulmonary vasculature to elevated Tr-OxPL, which exacerbates bacterial lung injury. CD36 inhibition is a promising therapeutic approach for improving pneumonia outcomes in aging population. Full article
Show Figures

Figure 1

12 pages, 1492 KiB  
Article
Evaluation of Endocan as a Treatment for Acute Inflammatory Respiratory Failure
by Maxence Hureau, Lucie Portier, Méline Prin, Patricia de Nadai, Joanne Balsamelli, Anne Tsicopoulos, Daniel Mathieu, Philippe Lassalle, Bogdan Grigoriu, Alexandre Gaudet and Nathalie De Freitas Caires
Cells 2023, 12(2), 257; https://doi.org/10.3390/cells12020257 - 7 Jan 2023
Cited by 1 | Viewed by 1792
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening condition resulting from acute pulmonary inflammation. However, no specific treatment for ARDS has yet been developed. Previous findings suggest that lung injuries related to ARDS could be regulated by endocan (Esm-1). The aim of [...] Read more.
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening condition resulting from acute pulmonary inflammation. However, no specific treatment for ARDS has yet been developed. Previous findings suggest that lung injuries related to ARDS could be regulated by endocan (Esm-1). The aim of this study was to evaluate the potential efficiency of endocan in the treatment of ARDS. Methods: We first compared the features of acute pulmonary inflammation and the severity of hypoxemia in a tracheal LPS-induced acute lung injury (ALI) model performed in knockout (Esm1−/−) and wild type (WT) littermate C57Bl/6 mice. Next, we assessed the effects of a continuous infusion of glycosylated murine endocan in our ALI model in Esm1−/− mice. Results: In our ALI model, we report higher alveolar leukocytes (p < 0.001), neutrophils (p < 0.001), and MPO (p < 0.001), and lower blood oxygenation (p < 0.001) in Esm1−/− mice compared to WT mice. Continuous delivery of glycosylated murine endocan after LPS-induced ALI resulted in decreased alveolar leukocytes (p = 0.012) and neutrophils (p = 0.012), higher blood oxygenation levels (p < 0.001), and reduced histological lung injury (p = 0.04), compared to mice treated with PBS. Conclusions: Endocan appears to be an effective treatment in an ARDS-like model in C57Bl/6 mice. Full article
Show Figures

Figure 1

2021

Jump to: 2023

17 pages, 3103 KiB  
Article
Functional Roles for CD26/DPP4 in Mediating Inflammatory Responses of Pulmonary Vascular Endothelial Cells
by Yukiko Takahashi, Takeshi Kawasaki, Hironori Sato, Yoshinori Hasegawa, Steven M. Dudek, Osamu Ohara, Koichiro Tatsumi and Takuji Suzuki
Cells 2021, 10(12), 3508; https://doi.org/10.3390/cells10123508 - 11 Dec 2021
Cited by 9 | Viewed by 3520
Abstract
Excessive inflammation in the lung is a primary cause of acute respiratory distress syndrome (ARDS). CD26/dipeptidyl peptidase-4 (DPP4) is a transmembrane protein that is expressed in various cell types and exerts multiple pleiotropic effects. We recently reported that pharmacological CD26/DPP4 inhibition ameliorated lipopolysaccharide [...] Read more.
Excessive inflammation in the lung is a primary cause of acute respiratory distress syndrome (ARDS). CD26/dipeptidyl peptidase-4 (DPP4) is a transmembrane protein that is expressed in various cell types and exerts multiple pleiotropic effects. We recently reported that pharmacological CD26/DPP4 inhibition ameliorated lipopolysaccharide (LPS)-induced lung injury in mice and exerted anti-inflammatory effects on human lung microvascular endothelial cells (HLMVECs), in vitro. However, the mechanistic roles of CD26/DPP4 in lung injury and its effects on HLMVECs remain unclear. In this study, transcriptome analysis, followed by various confirmation experiments using siRNA in cultured HLMVECs, are performed to evaluate the role of CD26/DPP4 in response to the pro-inflammatory involved in inflammation, barrier function, and regenerative processes in HLMVECs after pro-inflammatory stimulation. These are all functions that are closely related to the pathophysiology and repair process of lung injury. Confirmatory experiments using flow cytometry; enzyme-linked immunosorbent assay; quantitative polymerase chain reaction; dextran permeability assay; WST-8 assay; wound healing assay; and tube formation assay, reveal that the reduction of CD26/DPP4 via siRNA is associated with altered parameters of inflammation, barrier function, and the regenerative processes in HLMVECs. Thus, CD26/DPP4 can play a pathological role in mediating injury in pulmonary endothelial cells. CD26/DPP4 inhibition can be a new therapeutic strategy for inflammatory lung diseases, involving pulmonary vascular damage. Full article
Show Figures

Figure 1

18 pages, 962 KiB  
Review
Endothelial Dysfunction through Oxidatively Generated Epigenetic Mark in Respiratory Viral Infections
by Spiros Vlahopoulos, Ke Wang, Yaoyao Xue, Xu Zheng, Istvan Boldogh and Lang Pan
Cells 2021, 10(11), 3067; https://doi.org/10.3390/cells10113067 - 7 Nov 2021
Cited by 6 | Viewed by 3781
Abstract
The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle [...] Read more.
The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant responsiveness of the host immune system and lack of effective antiviral drugs. Current management of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications, including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors, and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to decrease disease burden, are discussed. Full article
Show Figures

Figure 1

11 pages, 2677 KiB  
Article
Haloperidol Attenuates Lung Endothelial Cell Permeability In Vitro and In Vivo
by Marco A. Colamonici, Yulia Epshtein, Weiguo Chen and Jeffrey R. Jacobson
Cells 2021, 10(9), 2186; https://doi.org/10.3390/cells10092186 - 25 Aug 2021
Cited by 5 | Viewed by 2823
Abstract
We previously reported that claudin-5, a tight junctional protein, mediates lung vascular permeability in a murine model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Recently, it has been reported that haloperidol, an antipsychotic medication, dose-dependently increases expression of claudin-5 in vitro [...] Read more.
We previously reported that claudin-5, a tight junctional protein, mediates lung vascular permeability in a murine model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Recently, it has been reported that haloperidol, an antipsychotic medication, dose-dependently increases expression of claudin-5 in vitro and in vivo, in brain endothelium. Notably, claudin-5 is highly expressed in both brain and lung tissues. However, the effects of haloperidol on EC barrier function are unknown. We hypothesized that haloperidol increases lung EC claudin-5 expression and attenuates agonist-induced lung EC barrier disruption. Human pulmonary artery ECs were pretreated with haloperidol at variable concentrations (0.1–10 μM) for 24 h. Cell lysates were subjected to Western blotting for claudin-5, in addition to occludin and zona occludens-1 (ZO-1), two other tight junctional proteins. To assess effects on barrier function, EC monolayers were pretreated for 24 h with haloperidol (10 µM) or vehicle prior to treatment with thrombin (1 U/mL), with measurements of transendothelial electrical resistance (TER) recorded as a real-time assessment of barrier integrity. In separate experiments, EC monolayers grown in Transwell inserts were pretreated with haloperidol (10 µM) prior to stimulation with thrombin (1 U/mL, 1 h) and measurement of FITC-dextran flux. Haloperidol significantly increased claudin-5, occludin, and ZO-1 expression levels. Measurements of TER and FITC-dextran Transwell flux confirmed a significant attenuation of thrombin-induced barrier disruption associated with haloperidol treatment. Finally, mice pretreated with haloperidol (4 mg/kg, IP) prior to the intratracheal administration of LPS (1.25 mg/kg, 16 h) had increased lung claudin-5 expression with decreased lung injury as assessed by bronchoalveolar lavage (BAL) fluid protein content, total cell counts, and inflammatory cytokines, in addition to lung histology. Our data confirm that haloperidol results in increased claudin-5 expression levels and demonstrates lung vascular-protective effects both in vitro and in vivo in a murine ALI model. These findings suggest that haloperidol may represent a novel therapy for the prevention or treatment of ALI and warrants further investigation in this context. Full article
Show Figures

Figure 1

17 pages, 4750 KiB  
Article
Group V Phospholipase A2 Mediates Endothelial Dysfunction and Acute Lung Injury Caused by Methicillin-Resistant Staphylococcus Aureus
by Yu Maw Htwe, Huashan Wang, Patrick Belvitch, Lucille Meliton, Mounica Bandela, Eleftheria Letsiou and Steven M. Dudek
Cells 2021, 10(7), 1731; https://doi.org/10.3390/cells10071731 - 8 Jul 2021
Cited by 9 | Viewed by 2712
Abstract
Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. [...] Read more.
Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection. Full article
Show Figures

Figure 1

20 pages, 1619 KiB  
Review
Heteromeric TRP Channels in Lung Inflammation
by Meryam Zergane, Wolfgang M. Kuebler and Laura Michalick
Cells 2021, 10(7), 1654; https://doi.org/10.3390/cells10071654 - 1 Jul 2021
Cited by 11 | Viewed by 3582
Abstract
Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial barrier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells [...] Read more.
Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial barrier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protective strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review. Full article
Show Figures

Figure 1

12 pages, 3649 KiB  
Article
The HSP90 Inhibitor, AUY-922, Protects and Repairs Human Lung Microvascular Endothelial Cells from Hydrochloric Acid-Induced Endothelial Barrier Dysfunction
by Ruben M. L. Colunga Biancatelli, Pavel Solopov, Betsy Gregory and John D. Catravas
Cells 2021, 10(6), 1489; https://doi.org/10.3390/cells10061489 - 13 Jun 2021
Cited by 14 | Viewed by 2706
Abstract
Exposure to hydrochloric acid (HCl) leads acutely to asthma-like symptoms, acute respiratory distress syndrome (ARDS), including compromised alveolo-capillary barrier, and respiratory failure. To better understand the direct effects of HCl on pulmonary endothelial function, we studied the characteristics of HCl-induced endothelial barrier dysfunction [...] Read more.
Exposure to hydrochloric acid (HCl) leads acutely to asthma-like symptoms, acute respiratory distress syndrome (ARDS), including compromised alveolo-capillary barrier, and respiratory failure. To better understand the direct effects of HCl on pulmonary endothelial function, we studied the characteristics of HCl-induced endothelial barrier dysfunction in primary cultures of human lung microvascular endothelial cells (HLMVEC), defined the involved molecular pathways, and tested the potentially beneficial effects of Heat Shock Protein 90 (HSP90) inhibitors. HCl impaired barrier function in a time- and concentration-dependent manner and was associated with activation of Protein Kinase B (AKT), Ras homolog family member A (RhoA) and myosin light chain 2 (MLC2), as well as loss of plasmalemmal VE-cadherin, rearrangement of cortical actin, and appearance of inter-endothelial gaps. Pre-treatment or post-treatment of HLMVEC with AUY-922, a third-generation HSP90 inhibitor, prevented and restored HCl-induced endothelial barrier dysfunction. AUY-922 increased the expression of HSP70 and inhibited the activation (phosphorylation) of extracellular-signal regulated kinase (ERK) and AKT. AUY-922 also prevented the HCl-induced activation of RhoA and MLC2 and the internalization of plasmalemmal VE-cadherin. We conclude that, by increasing the expression of cytoprotective proteins, interfering with actomyosin contractility, and enhancing the expression of junction proteins, inhibition of HSP90 may represent a useful approach for the management of HCl-induced endothelial dysfunction and acute lung injury. Full article
Show Figures

Figure 1

16 pages, 3708 KiB  
Article
ACE2-Independent Interaction of SARS-CoV-2 Spike Protein with Human Epithelial Cells Is Inhibited by Unfractionated Heparin
by Lynda J. Partridge, Lucy Urwin, Martin J. H. Nicklin, David C. James, Luke R. Green and Peter N. Monk
Cells 2021, 10(6), 1419; https://doi.org/10.3390/cells10061419 - 7 Jun 2021
Cited by 39 | Viewed by 7985
Abstract
Coronaviruses such as SARS-CoV-2, which is responsible for COVID-19, depend on virus spike protein binding to host cell receptors to cause infection. The SARS-CoV-2 spike protein binds primarily to ACE2 on target cells and is then processed by membrane proteases, including TMPRSS2, leading [...] Read more.
Coronaviruses such as SARS-CoV-2, which is responsible for COVID-19, depend on virus spike protein binding to host cell receptors to cause infection. The SARS-CoV-2 spike protein binds primarily to ACE2 on target cells and is then processed by membrane proteases, including TMPRSS2, leading to viral internalisation or fusion with the plasma membrane. It has been suggested, however, that receptors other than ACE2 may be involved in virus binding. We have investigated the interactions of recombinant versions of the spike protein with human epithelial cell lines that express low/very low levels of ACE2 and TMPRSS2 in a proxy assay for interaction with host cells. A tagged form of the spike protein containing the S1 and S2 regions bound in a temperature-dependent manner to all cell lines, whereas the S1 region alone and the receptor-binding domain (RBD) interacted only weakly. Spike protein associated with cells independently of ACE2 and TMPRSS2, while RBD required the presence of high levels of ACE2 for interaction. As the spike protein has previously been shown to bind heparin, a soluble glycosaminoglycan, we tested the effects of various heparins on ACE2-independent spike protein interaction with cells. Unfractionated heparin inhibited spike protein interaction with an IC50 value of <0.05 U/mL, whereas two low-molecular-weight heparins were less effective. A mutant form of the spike protein, lacking the arginine-rich putative furin cleavage site, interacted only weakly with cells and had a lower affinity for unfractionated and low-molecular-weight heparin than the wild-type spike protein. This suggests that the furin cleavage site might also be a heparin-binding site and potentially important for interactions with host cells. The glycosaminoglycans heparan sulphate and dermatan sulphate, but not chondroitin sulphate, also inhibited the binding of spike protein, indicating that it might bind to one or both of these glycosaminoglycans on the surface of target cells. Full article
Show Figures

Figure 1

21 pages, 1038 KiB  
Review
Lung Transplantation, Pulmonary Endothelial Inflammation, and Ex-Situ Lung Perfusion: A Review
by Keir A. Forgie, Nicholas Fialka, Darren H. Freed and Jayan Nagendran
Cells 2021, 10(6), 1417; https://doi.org/10.3390/cells10061417 - 7 Jun 2021
Cited by 15 | Viewed by 3921
Abstract
Lung transplantation (LTx) is the gold standard treatment for end-stage lung disease; however, waitlist mortality remains high due to a shortage of suitable donor lungs. Organ quality can be compromised by lung ischemic reperfusion injury (LIRI). LIRI causes pulmonary endothelial inflammation and may [...] Read more.
Lung transplantation (LTx) is the gold standard treatment for end-stage lung disease; however, waitlist mortality remains high due to a shortage of suitable donor lungs. Organ quality can be compromised by lung ischemic reperfusion injury (LIRI). LIRI causes pulmonary endothelial inflammation and may lead to primary graft dysfunction (PGD). PGD is a significant cause of morbidity and mortality post-LTx. Research into preservation strategies that decrease the risk of LIRI and PGD is needed, and ex-situ lung perfusion (ESLP) is the foremost technological advancement in this field. This review addresses three major topics in the field of LTx: first, we review the clinical manifestation of LIRI post-LTx; second, we discuss the pathophysiology of LIRI that leads to pulmonary endothelial inflammation and PGD; and third, we present the role of ESLP as a therapeutic vehicle to mitigate this physiologic insult, increase the rates of donor organ utilization, and improve patient outcomes. Full article
Show Figures

Figure 1

16 pages, 979 KiB  
Review
Ischemia–Reperfusion Injury in Lung Transplantation
by Toyofumi Fengshi Chen-Yoshikawa
Cells 2021, 10(6), 1333; https://doi.org/10.3390/cells10061333 - 28 May 2021
Cited by 70 | Viewed by 5679
Abstract
Lung transplantation has been established worldwide as the last treatment for end-stage respiratory failure. However, ischemia–reperfusion injury (IRI) inevitably occurs after lung transplantation. The most severe form of IRI leads to primary graft failure, which is an important cause of morbidity and mortality [...] Read more.
Lung transplantation has been established worldwide as the last treatment for end-stage respiratory failure. However, ischemia–reperfusion injury (IRI) inevitably occurs after lung transplantation. The most severe form of IRI leads to primary graft failure, which is an important cause of morbidity and mortality after lung transplantation. IRI may also induce rejection, which is the main cause of mortality in recipients. Despite advances in donor management and graft preservation, most donor grafts are still unsuitable for transplantation. Although the pulmonary endothelium is the primary target site of IRI, the pathophysiology of lung IRI remains incompletely understood. It is essential to understand the mechanism of pulmonary IRI to improve the outcomes of lung transplantation. Therefore, we reviewed the state-of-the-art in the management of pulmonary IRI after lung transplantation. Recently, the ex vivo lung perfusion (EVLP) system has been clinically introduced worldwide. Various promising therapeutic strategies for the protection of the endothelium against IRI, including EVLP, inhalation therapy with therapeutic gases and substances, fibrinolytic treatment, and mesenchymal stromal cell therapy, are awaiting clinical application. We herein review the latest advances in the field of pulmonary IRI in lung transplantation. Full article
Show Figures

Figure 1

15 pages, 3504 KiB  
Article
Never Change a Flowing System? The Effects of Retrograde Flow on Isolated Perfused Lungs and Vessels
by Hanif Krabbe, Sergej Klassen, Johannes Bleidorn, Michael J. Jacobs, Julia Krabbe, Aaron Babendreyer and Christian Martin
Cells 2021, 10(5), 1210; https://doi.org/10.3390/cells10051210 - 15 May 2021
Cited by 1 | Viewed by 2299
Abstract
Retrograde perfusion may occur during disease, surgery or extracorporeal circulation. While it is clear that endothelial cells sense and respond to changes in blood flow, the consequences of retrograde perfusion are only poorly defined. Similar to shear stress or disturbed flow, retrograde perfusion [...] Read more.
Retrograde perfusion may occur during disease, surgery or extracorporeal circulation. While it is clear that endothelial cells sense and respond to changes in blood flow, the consequences of retrograde perfusion are only poorly defined. Similar to shear stress or disturbed flow, retrograde perfusion might result in vasomotor responses, edema formation or inflammation in and around vessels. In this study we investigated in rats the effects of retrograde perfusion in isolated systemic vessels (IPV) and in pulmonary vessels of isolated perfused lungs (IPL). Anterograde and retrograde perfusion was performed for 480 min in IPV and for 180 min in the IPL. Perfusion pressure, cytokine levels in perfusate and bronchoalveolar lavage fluid (BALF), edema formation and mRNA expression were studied. In IPV, an increased perfusion pressure and initially also increased cytokine levels were observed during retrograde perfusion. In the IPL, increased edema formation occurred, while cytokine levels were not increased, though dilution of cytokines in BALF due to pulmonary edema cannot be excluded. In conclusion, effects of flow reversal were visible immediately after initiation of retrograde perfusion. Pulmonary edema formation was the only effect of the 3 h retrograde perfusion. Therefore, further research should focus on identification of possible long-term complications of flow reversal. Full article
Show Figures

Figure 1

5 pages, 200 KiB  
Perspective
Mesenchymal Stromal Cell Secretome for Post-COVID-19 Pulmonary Fibrosis: A New Therapy to Treat the Long-Term Lung Sequelae?
by Elia Bari, Ilaria Ferrarotti, Laura Saracino, Sara Perteghella, Maria Luisa Torre, Luca Richeldi and Angelo Guido Corsico
Cells 2021, 10(5), 1203; https://doi.org/10.3390/cells10051203 - 14 May 2021
Cited by 19 | Viewed by 4354
Abstract
To date, more than 100 million people worldwide have recovered from COVID-19. Unfortunately, although the virus is eradicated in such patients, fibrotic irreversible interstitial lung disease (pulmonary fibrosis, PF) is clinically evident. Given the vast numbers of individuals affected, it is urgent to [...] Read more.
To date, more than 100 million people worldwide have recovered from COVID-19. Unfortunately, although the virus is eradicated in such patients, fibrotic irreversible interstitial lung disease (pulmonary fibrosis, PF) is clinically evident. Given the vast numbers of individuals affected, it is urgent to design a strategy to prevent a second wave of late mortality associated with COVID-19 PF as a long-term consequence of such a devastating pandemic. Available antifibrotic therapies, namely nintedanib and pirfenidone, might have a role in attenuating profibrotic pathways in SARS-CoV-2 infection but are not economically sustainable by national health systems and have critical adverse effects. It is our opinion that the mesenchymal stem cell secretome could offer a new therapeutic approach in treating COVID-19 fibrotic lungs through its anti-inflammatory and antifibrotic factors. Full article
13 pages, 1841 KiB  
Article
Sphingosine 1 Phosphate (S1P) Receptor 1 Is Decreased in Human Lung Microvascular Endothelial Cells of Smokers and Mediates S1P Effect on Autophagy
by Khushboo Goel, Erica L. Beatman, Nicholas Egersdorf, April Scruggs, Danting Cao, Evgeny V. Berdyshev, Kelly S. Schweitzer and Irina Petrache
Cells 2021, 10(5), 1200; https://doi.org/10.3390/cells10051200 - 14 May 2021
Cited by 8 | Viewed by 2761
Abstract
Destruction of alveoli by apoptosis induced by cigarette smoke (CS) is a major driver of emphysema pathogenesis. However, when compared to cells isolated from non-smokers, primary human lung microvascular endothelial cells (HLMVECs) isolated from chronic smokers are more resilient when exposed to apoptosis-inducing [...] Read more.
Destruction of alveoli by apoptosis induced by cigarette smoke (CS) is a major driver of emphysema pathogenesis. However, when compared to cells isolated from non-smokers, primary human lung microvascular endothelial cells (HLMVECs) isolated from chronic smokers are more resilient when exposed to apoptosis-inducing ceramide. Whether this adaptation restores homeostasis is unknown. To better understand the phenotype of HLMVEC in smokers, we interrogated a major pro-survival pathway supported by sphingosine-1-phosphate (S1P) signaling via S1P receptor 1 (S1P1). Primary HLMVECs from lungs of non-smoker or smoker donors were isolated and studied in culture for up to five passages. S1P1 mRNA and protein abundance were significantly decreased in HLMVECs from smokers compared to non-smokers. S1P1 was also decreased in situ in lungs of mice chronically exposed to CS. Levels of S1P1 expression tended to correlate with those of autophagy markers, and increasing S1P (via S1P lyase knockdown with siRNA) stimulated baseline macroautophagy with lysosomal degradation. In turn, loss of S1P1 (siRNA) inhibited these effects of S1P on HLMVECs autophagy. These findings suggest that the anti-apoptotic phenotype of HLMVECs from smokers may be maladaptive, since it is associated with decreased S1P1 expression that may impair their autophagic response to S1P. Full article
Show Figures

Graphical abstract

13 pages, 4107 KiB  
Article
Subnormothermic Ex Vivo Lung Perfusion Temperature Improves Graft Preservation in Lung Transplantation
by Stephan Arni, Tatsuo Maeyashiki, Necati Citak, Isabelle Opitz and Ilhan Inci
Cells 2021, 10(4), 748; https://doi.org/10.3390/cells10040748 - 29 Mar 2021
Cited by 18 | Viewed by 3002
Abstract
Normothermic machine perfusion is clinically used to assess the quality of marginal donor lungs. Although subnormothermic temperatures have proven beneficial for other solid organ transplants, subnormothermia-related benefits of ex vivo lung perfusion (EVLP) still need to be investigated. Material and Methods: In a [...] Read more.
Normothermic machine perfusion is clinically used to assess the quality of marginal donor lungs. Although subnormothermic temperatures have proven beneficial for other solid organ transplants, subnormothermia-related benefits of ex vivo lung perfusion (EVLP) still need to be investigated. Material and Methods: In a rat model, we evaluated the effects of 28 °C temperature on 4-h EVLPs with subsequent left lung transplantation. The recipients were observed for 2 h postoperatively. Lung physiology data were recorded and metabolic parameters were assessed. Results: During the 4-h subnormothermic EVLP, the lung oxygenation was significantly higher (p < 0.001), pulmonary vascular resistance (PVR) lower and dynamic compliance (Cdyn) higher when compared to the 37 °C EVLP. During an end-of-EVLP stress test, we recorded significantly higher flow (p < 0.05), lower PVR (p < 0.05) and higher Cdyn (p < 0.01) in the 28 °C group when compared to the 37 °C group. After the left lung transplantation, Cdyn and oxygenation improved in the 28 °C group, which were comparable to the 37 °C group. Chemokines RANTES, MIP-3α, MIP-1α MCP-1 GRO/KC and pro-inflammatory mediators GM-CSF, G-CSF and TNFα were significantly lower after the 28 °C EVLP and remained low in the plasma of the recipient rats after transplantation. The lungs of the 28 °C group showed significantly lowered myeloperoxidase activity and lowered levels of TNFα and IL-1β. Conclusions: Compared to the normothermic perfusion, the 28 °C EVLP improved Cdyn and PVR and reduced both the release of pro-inflammatory cytokines and myeloperoxidase activity in lung tissue. These observations were also observed after the left lung transplantation in the subnormothermic group. The 28 °C EVLP significantly improved biochemical, physiological and inflammatory parameters in lung donors. Full article
Show Figures

Figure 1

13 pages, 1427 KiB  
Article
ICU Admission Levels of Endothelial Biomarkers as Predictors of Mortality in Critically Ill COVID-19 Patients
by Alice G. Vassiliou, Chrysi Keskinidou, Edison Jahaj, Parisis Gallos, Ioanna Dimopoulou, Anastasia Kotanidou and Stylianos E. Orfanos
Cells 2021, 10(1), 186; https://doi.org/10.3390/cells10010186 - 19 Jan 2021
Cited by 78 | Viewed by 4562
Abstract
Endotheliopathy is suggested to be an important feature of COVID-19 in hospitalized patients. To determine whether endotheliopathy is involved in COVID-19-associated mortality, markers of endothelial damage were assessed in critically ill COVID-19 patients upon intensive care unit (ICU) admission. Thirty-eight critically ill COVID-19 [...] Read more.
Endotheliopathy is suggested to be an important feature of COVID-19 in hospitalized patients. To determine whether endotheliopathy is involved in COVID-19-associated mortality, markers of endothelial damage were assessed in critically ill COVID-19 patients upon intensive care unit (ICU) admission. Thirty-eight critically ill COVID-19 patients were included in this observational study, 10 of whom died in the ICU. Endothelial biomarkers, including soluble (s)E-selectin, sP-selectin, angiopoietin 1 and 2 (Ang-1 and Ang-2, respectively), soluble intercellular adhesion molecule 1 (sICAM-1), vascular endothelial growth factor (VEGF), soluble vascular endothelial (VE)-cadherin, and von Willebrand factor (vWf), were measured upon ICU admission. The ICU cohort was subsequently divided into survivors and non-survivors; Kaplan–Meier analysis was used to explore associations between biomarkers and survival, while receiver operating characteristic (ROC) curves were generated to determine their potential prognostic value. sE-selectin, sP-selectin, Ang-2, and sICAM-1 were significantly elevated in ICU non-survivors compared to survivors, and also associated with a higher mortality probability in the Kaplan–Meier analysis. The prognostic values of sE-selectin, Ang-2, and sICAM-1 from the generated ROC curves were greater than 0.85. Hence, we conclude that in our cohort, ICU non-survivors had higher levels of specific endothelial markers compared to survivors. Elevated levels of these markers upon ICU admission could possibly predict mortality in COVID-19. Full article
Show Figures

Figure 1

Back to TopTop