Development of PET Radiotracers for Imaging Alpha-Synuclein

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Cellular Aging".

Deadline for manuscript submissions: closed (31 May 2025) | Viewed by 4496

Special Issue Editors


E-Mail Website
Guest Editor
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
Interests: positron emission tomography; neurodegeneration; alpha synuclein
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
Interests: positron emission tomography; Parkinson’s disease; alpha-synuclein
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The past few years have witnessed a tremendous amount of progress in the area of PET radiotracer development for imaging alpha-synuclein aggregates in synucleinopathies. There are numerous first-in-human imaging studies being conducted with carbon-aa and fluorine-18-labeled radiotracers for alpha synuclein. We have also witnessed a number of advances in the structural biology of alpha synuclein isolated from postmortem samples of PD and MSA brain. The goal of this Special Issue of Cells is to provide a comprehensive overview of the progress in PET radiotracer development in this area, one that would serve as a central resource to the PET imaging community. We have contacted you because you have made significant progress in this area, and we believe you could make an important contribution to this Special Issue of Cells. We hope that you are able to contribute to this project.

Prof. Dr. Robert H. Mach
Dr. Jamie Eberling
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • alpha-synuclein
  • Parkinson’s disease
  • multiple system atrophy
  • positron emission tomography

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

11 pages, 5560 KiB  
Article
Pilot Study of [11C]HY-2-15: A Mixed Alpha-Synuclein and Tau PET Radiotracer
by Chia-Ju Hsieh, Dinahlee Saturnino Guarino, Anthony J. Young, Andrew D. Siderowf, Ilya Nasrallah, Alexander Schmitz, Carol Garcia, Ho Young Kim, Erin K. Schubert, Hsiaoju Lee, Joel S. Perlmutter and Robert H. Mach
Cells 2025, 14(15), 1157; https://doi.org/10.3390/cells14151157 - 26 Jul 2025
Viewed by 289
Abstract
A novel brain positron emission tomography (PET) radioligand, [11C]HY-2-15, has potential for imaging alpha-synuclein aggregations in multiple system atrophy and misfolded tau proteins in tauopathies, based on its high binding affinity in disease brain tissue homogenates. Here, we demonstrate that [ [...] Read more.
A novel brain positron emission tomography (PET) radioligand, [11C]HY-2-15, has potential for imaging alpha-synuclein aggregations in multiple system atrophy and misfolded tau proteins in tauopathies, based on its high binding affinity in disease brain tissue homogenates. Here, we demonstrate that [3H]HY-2-15 has the capability to bind to aggregated alpha-synuclein in multiple system atrophy brain and tau aggregations in progressive supranuclear palsy and corticobasal degeneration brain tissues via in vitro autoradiography study. A first-in-human pilot multicenter clinical study recruited a total of 10 subjects including healthy controls and patients with Parkinson’s disease, multiple system atrophy, or progressive supranuclear palsy. The study revealed that [11C]HY-2-15 has a relatively higher specific uptake in the pallidum and midbrain of patients with progressive supranuclear palsy. Total-body scans performed on the PennPET Explorer showed the radiotracer was cleared by renal excretion. However, the rapid metabolism and low brain uptake resulted in a limited signal of [11C]HY-2-15 in brain. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Figure 1

23 pages, 7256 KiB  
Article
Discovery of N-(6-Methoxypyridin-3-yl)quinoline-2-amine Derivatives for Imaging Aggregated α-Synuclein in Parkinson’s Disease with Positron Emission Tomography
by Haiyang Zhao, Tianyu Huang, Dhruva D. Dhavale, Jennifer Y. O’Shea, Zsofia Lengyel-Zhand, Dinahlee Saturnino Guarino, Jiwei Gu, Xuyi Yue, Ying-Hwey Nai, Hao Jiang, Marshall G. Lougee, Vinayak V. Pagar, Hee Jong Kim, Benjamin A. Garcia, E. James Petersson, Chester A. Mathis, Paul T. Kotzbauer, Joel S. Perlmutter, Robert H. Mach and Zhude Tu
Cells 2025, 14(14), 1108; https://doi.org/10.3390/cells14141108 - 18 Jul 2025
Viewed by 865
Abstract
The fibrillary aggregation of α-synuclein is a hallmark of Parkinson’s disease (PD) and a potential target for diagnostics and therapeutics. Although substantial effort has been devoted to the development of positron emission tomography (PET) probes for detecting α-synuclein aggregates, no clinically suitable tracer [...] Read more.
The fibrillary aggregation of α-synuclein is a hallmark of Parkinson’s disease (PD) and a potential target for diagnostics and therapeutics. Although substantial effort has been devoted to the development of positron emission tomography (PET) probes for detecting α-synuclein aggregates, no clinically suitable tracer has been reported. The design and synthesis of 43 new N-(6-methoxypyridin-3-yl)quinolin-2-amine derivatives and an evaluation of their α-synuclein binding affinity is reported here. Compounds 7f, 7j, and 8i exhibited high affinity for α-synuclein and were selected for 11C, 18F, 125I, or 3H radiolabeling. A photoaffinity variant, TZ-CLX, structurally related to 7j and 8i, demonstrated preferential binding to the C-terminal region of α-synuclein fibrils. PET brain imaging studies using [11C]7f, [18F]7j, and [11C]8i in non-human primates indicated that these three α-synuclein PET tracers penetrated the blood–brain barrier. Both [11C]7f and [18F]7j showed more favorable brain washout pharmacokinetics than [11C]8i. In vitro binding assays showed that [125I]8i is a very potent α-synuclein radioligand, with Kd values of 5 nM for both PD brain tissues and LBD-amplified fibrils; it is also selective for PD tissues versus AD or control tissues. These results strongly suggest that the PET probes based on the N-(6-methoxypyridin-3-yl)quinoline-2-amine scaffold have potential utility in detecting α-synuclein aggregates in vivo. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Figure 1

32 pages, 10360 KiB  
Article
Development and In Vitro Characterization of [3H]GMC-058 as Radioligand for Imaging Parkinsonian-Related Proteinopathies
by Andrea Varrone, Vasco C. Sousa, Manolo Mugnaini, Sandra Biesinger, Gunnar Nordvall, Lee Kingston, Ileana Guzzetti, Charles S. Elmore, Dan Sunnemark, Dinahlee Saturnino Guarino, Sjoerd J. Finnema and Magnus Schou
Cells 2025, 14(12), 869; https://doi.org/10.3390/cells14120869 - 9 Jun 2025
Viewed by 776
Abstract
The molecular imaging of α-synuclein (α-syn) pathology in Parkinson’s disease (PD) and related movement disorders is a clinically unmet need. The aim of this study was to discover and characterize in vitro a radioligand for imaging α-syn pathology. A library of 78 small [...] Read more.
The molecular imaging of α-synuclein (α-syn) pathology in Parkinson’s disease (PD) and related movement disorders is a clinically unmet need. The aim of this study was to discover and characterize in vitro a radioligand for imaging α-syn pathology. A library of 78 small molecules was developed and screened using recombinant α-syn fibrils and brain homogenates from Alzheimer’s disease (AD) donors. The selection criteria were as follows: Kiα-syn < 30 nM, Kitau and KiA-β > 200 nM. Three compounds, GMC-073 (Kiα-syn: 8 nM), GMC-098 (Kiα-syn: 9.7 nM), and GMC-058 (Kiα-syn: 22.5 nM), fulfilled the criteria and were radiolabeled with 3H. [3H]GMC-058 was the only compound with negligible binding in controls, and was further evaluated using tissue microarrays, autoradiography on fresh-frozen brain slices, and in vitro saturation binding assay on brain homogenates. [3H]GMC-058 binding co-localized with α-syn inclusions in Parkinson’s disease (PD) and multiple-system atrophy (MSA), with dense A-β plaques in cerebral amyloid angiopathy and AD and with p-tau inclusions in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Specific binding was highest in PSP and CBD. In vitro KD was highest in AD (5.4 nM), followed by PSP (41 nM) and CBD (75 nM). The KD in MSA, PD, and controls was >100 nM. [3H]GMC-058 is a novel radioligand displaying a low affinity for aggregated α-syn in tissue, with an in vitro profile also suitable for detecting tau pathology in 4R tauopathies. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Figure 1

Review

Jump to: Research, Other

31 pages, 10891 KiB  
Review
Development of Positron Emission Tomography Radiotracers for Imaging α-Synuclein Aggregates
by Xiaodi Guo, Jie Xiang, Keqiang Ye and Zhentao Zhang
Cells 2025, 14(12), 907; https://doi.org/10.3390/cells14120907 - 16 Jun 2025
Cited by 1 | Viewed by 934
Abstract
Neurodegenerative diseases (NDDs) that are characterized by the accumulation of alpha-synuclein (α-syn) aggregates in both neurons and the non-neuronal cells of the brain are called synucleinopathies. The most common synucleinopathies includes Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), multiple system atrophy (MSA), and [...] Read more.
Neurodegenerative diseases (NDDs) that are characterized by the accumulation of alpha-synuclein (α-syn) aggregates in both neurons and the non-neuronal cells of the brain are called synucleinopathies. The most common synucleinopathies includes Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Significant progress has been made in the development of positron emission tomography (PET) radiotracers for synucleinopathies, yielding several α-syn tracers that have entered clinical studies. However, selective α-syn imaging still faces inherent challenges. This review provides a comprehensive overview of the progress in α-syn PET radiotracers from three angles: Alzheimer’s disease (AD)-derived scaffolds, representative compound scaffolds and analogs, and the identification of α-syn tracers through high-throughput screening (HTS). We discuss the characteristics, advantages, and limitations of the tracers for preclinical and clinical application. Finally, future directions in the development of radioligands for proteinopathies are discussed. There is no clinical available PET radiotracer for imaging α-syn aggregates, but these advances have laid a key foundation for non-invasive α-syn imaging and early diagnosis of synucleinopathies. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Graphical abstract

Other

Jump to: Research, Review

9 pages, 571 KiB  
Perspective
a-synuclein PET Imaging: From Clinical Utility in Multiple System Atrophy to the Possible Diagnosis of Parkinson’s Disease
by Francesca Capotosti
Cells 2025, 14(11), 834; https://doi.org/10.3390/cells14110834 - 3 Jun 2025
Cited by 1 | Viewed by 973
Abstract
The development of PET tracers for the detection of pathological alpha-synuclein (a-synuclein) has the potential to revolutionize the diagnosis, monitoring, and therapeutic interventions of synucleinopathies, including Parkinson’s disease. The journey toward identifying effective PET imaging agents, however, has faced significant challenges due to [...] Read more.
The development of PET tracers for the detection of pathological alpha-synuclein (a-synuclein) has the potential to revolutionize the diagnosis, monitoring, and therapeutic interventions of synucleinopathies, including Parkinson’s disease. The journey toward identifying effective PET imaging agents, however, has faced significant challenges due to the complexity and heterogeneity of the a-synuclein structures. Achieving the goal is further compounded by the low density of the pathological target, necessitating that the tracer exhibits a high binding potential, as well as the co-existence of other protein aggregates, requiring the tracer to be highly specific and selective for a-synuclein. In this perspective article, the challenges regarding developing PET tracers for a-synuclein are explored and summarized, together with the most significant recent advances in the field. These include the approaches used by our laboratories, leading to the publication of the first clinical PET images of a-synuclein pathology in patients with multiple system atrophy (MSA). Building on the current understanding of the different a-synuclein species and findings based on the success of PET tracers in the field of neurodegenerative diseases, future directions are considered also to achieve the imaging of a-synuclein pathology in Parkinson’s patients. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Figure 1

Back to TopTop