Current Status of α-Synuclein Biomarkers and the Need for α-Synuclein PET Tracers
Abstract
1. The Urgent Need for α-Synuclein Imaging
2. Synucleinopathies: Clinical and Biological Spectrum
3. Need for Biomarkers
4. Status of Currently Available α-Synuclein Biomarkers
4.1. Quantitative Measurement of α-Synuclein in Cerebrospinal Fluid
4.2. CSF α-Synuclein Seed Amplification Assay
4.3. Assays to Measure α-Synuclein in Blood
4.4. Florescent Immunohistochemistry of α-Synuclein from Skin Biopsies
5. Overview of Imaging Biomarker Approaches
5.1. Structural Imaging
5.2. FDG-PET
5.3. Amyloid and Tau Imaging
6. Molecular Imaging in Synucleinopathies and the Progression of α-Synuclein Specific Imaging
Name | Modality | Authors |
---|---|---|
Clinically Available | ||
Alphα-synuclein Skin Biopsy | Skin biopsy, immunohistochemistry | Gibbons et al., 2023 [67]; Gibbons et al., 2024 [65] |
Alpha Synuclein Seed Amplification Assay | Seed amplification assay, CSF | Concha-Marambio et al., 2023 [53]; Fernandes Gomes et al., 2023 [55] |
In Development | ||
PET tracers | ||
[F18]ACI-12589 PET | PET-CT | Smith et al., 2023 [86] |
[F8]-SPAL-T-06 | PET-CT | Matsuoka et al., 2022 [87] |
[F18]-F0502B | PET-CT | Xiang et al., 2023 [88] |
[F18]-C05-05 | PET-CT | Endo et al., 2024 [85] |
[3H] and [11C] KAC-50.1 | PET-CT | Saturino Guarino et al., 2024 [89] |
Fluid-based markers | ||
Alpha Syunclein Seed Amplification Assay | Seed amplification assay, serum | Okuzumi et al., 2023 [61] |
Alpha-Syunclein Seed Amplification Assay | Isolation of extracellular vesicles using NCAM-1, followed by seed amplification assay, plasma | Bernhardt et al., 2024 [60] |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PD | Parkinson’s disease |
RBD | REM Sleep Behavior Disorder |
MSA | Multiple Systems Atrophy |
AD | Alzheimer’s disease |
REM | Rapid Eye Movement |
References
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023, 14, 1–16. [Google Scholar] [CrossRef]
- Sharma, M.; Burré, J. α-Synuclein in synaptic function and dysfunction. Trends Neurosci. 2022, 46, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.-Y.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. α-Synuclein in Lewy bodies. Nature 1997, 388, 839–840. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Yoshimoto, M.; Tsuji, S.; Takahashi, H. α-Synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci. Lett. 1998, 249, 180–182. [Google Scholar] [CrossRef]
- Leak, R.K.; Clark, R.N.; Abbas, M.; Xu, F.; Brodsky, J.L.; Chen, J.; Hu, X.; Luk, K.C. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol. 2024, 148, 1–21. [Google Scholar] [CrossRef]
- Pang, C.C.C.; Sørensen, M.H.; Lee, K.; Luk, K.C.; Trojanowski, J.Q.; Lee, V.M.Y.; Noble, W.; Chang, R.C.C. Investigating key factors underlying neurodegeneration linked to alpha-synuclein spread. Neuropathol. Appl. Neurobiol. 2022, 48, e12829. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Schillaci, O. Global experience in brain amyloid imaging. Semin. Nucl. Med. 2025, 55, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Leuzy, A.; Bollack, A.; Pellegrino, D.; Teunissen, C.E.; La Joie, R.; Rabinovici, G.D.; Franzmeier, N.; Johnson, K.; Barkhof, F.; Shaw, L.M.; et al. Considerations in the clinical use of amyloid PET and CSF biomarkers for Alzheimer’s disease. Alzheimer’s Dement. 2025, 21, e14528. [Google Scholar] [CrossRef]
- Savica, R.; Grossardt, B.R.; Bower, J.H.; Ahlskog, J.E.; Rocca, W.A. Incidence and Pathology of Synucleinopathies and Tauopathies Related to Parkinsonism. JAMA Neurol. 2013, 70, 859–866. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Steur, E.N.J.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Comi, C.; Magistrelli, L.; Oggioni, G.; Carecchio, M.; Fleetwood, T.; Cantello, R.; Mancini, F.; Antonini, A. Peripheral nervous system involvement in Parkinson’s disease: Evidence and controversies. Park. Relat. Disord. 2014, 20, 1329–1334. [Google Scholar] [CrossRef]
- Goldman, J.G. Non-motor Symptoms and Treatments in Parkinson’s Disease. Neurol. Clin. 2025, 43, 291–317. [Google Scholar] [CrossRef]
- Poewe, W. Non-motor symptoms in Parkinson’s disease. Eur. J. Neurol. 2008, 15 (Suppl. 1), 14–20. [Google Scholar] [CrossRef]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.-P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and management of dementia with Lewy bodies. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef]
- Gomperts, S.N. Lewy Body Dementias. Contin. Lifelong Learn. Neurol. 2016, 22, 435–463. [Google Scholar] [CrossRef]
- Irwin, D.J.; Lee, V.M.-Y.; Trojanowski, J.Q. Parkinson’s disease dementia: Convergence of α-synuclein, tau and amyloid-β pathologies. Nat. Rev. Neurosci. 2013, 14, 626–636. [Google Scholar] [CrossRef]
- McKeith, I.; Mintzer, J.; Aarsland, D.; Burn, D.; Chiu, H.; Cohen-Mansfield, J.; Dickson, D.; Dubois, B.; Duda, J.E.; Feldman, H.; et al. Dementia with Lewy bodies. Lancet Neurol. 2004, 3, 19–28. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.G.; Ferman, T.J.; Thomas, A.J.; Blanc, F.; Boeve, B.F.; Fujishiro, H.; Kantarci, K.; Muscio, C.; O’BRien, J.T.; Postuma, R.B.; et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 2020, 94, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Mak, E.; Su, L.; Williams, G.B.; O’bRien, J.T. Neuroimaging characteristics of dementia with Lewy bodies. Alzheimer’s Res. Ther. 2014, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Iranzo, A.; Santamaria, J.; Tolosa, E. Idiopathic rapid eye movement sleep behaviour disorder: Diagnosis, management, and the need for neuroprotective interventions. Lancet Neurol. 2016, 15, 405–419. [Google Scholar] [CrossRef]
- Schenck, C.H.; Mahowald, M.W. REM Sleep Behavior Disorder: Clinical, Developmental, and Neuroscience Perspectives 16 Years After its Formal Identification in SLEEP. Sleep 2002, 25, 120–138. [Google Scholar] [CrossRef]
- Postuma, R.B.; Gagnon, J.-F.; Montplaisir, J. Rapid eye movement sleep behavior disorder as a biomarker for neurodegeneration: The past 10years. Sleep Med. 2013, 14, 763–767. [Google Scholar] [CrossRef]
- Krismer, F.; Fanciulli, A.; Meissner, W.G.; Coon, E.A.; Wenning, G.K. Multiple system atrophy: Advances in pathophysiology, diagnosis, and treatment. Lancet Neurol. 2024, 23, 1252–1266. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Colosimo, C.; Geser, F.; Poewe, W. Multiple system atrophy. Lancet Neurol. 2004, 3, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.J.; Singer, W.; Parsaik, A.; Benarroch, E.E.; Ahlskog, J.E.; Fealey, R.D.; Parisi, J.E.; Sandroni, P.; Mandrekar, J.; Iodice, V.; et al. Multiple system atrophy: Prognostic indicators of survival. Mov. Disord. 2014, 29, 1151–1157. [Google Scholar] [CrossRef]
- Melki, R. Role of Different Alpha-Synuclein Strains in Synucleinopathies, Similarities with other Neurodegenerative Diseases. J. Park. Dis. 2015, 5, 217–227. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Tokuda, T.; Waragai, M.; Mendez, N.; Ishii, R.; Trenkwalder, C.; Mollenhauer, B.; Soto, C. Development of a Biochemical Diagnosis of Parkinson Disease by Detection of α-Synuclein Misfolded Aggregates in Cerebrospinal Fluid. JAMA Neurol. 2017, 74, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Virameteekul, S.; Revesz, T.; Jaunmuktane, Z.; Warner, T.T.; De Pablo-Fernández, E. Clinical Diagnostic Accuracy of Parkinson’s Disease: Where Do We Stand? Mov. Disord. 2023, 38, 558–566. [Google Scholar] [CrossRef]
- Adler, C.H.; Beach, T.G.; Hentz, J.G.; Shill, H.A.; Caviness, J.N.; Driver-Dunckley, E.; Sabbagh, M.N.; Sue, L.I.; Jacobson, S.A.; Belden, C.M.; et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease. Neurology 2014, 83, 406–412. [Google Scholar] [CrossRef]
- Hughes, A.J.; Daniel, S.E.; Ben-Shlomo, Y.; Lees, A.J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002, 125, 861–870. [Google Scholar] [CrossRef]
- Bajaj, N.; Hauser, R.A.; Grachev, I.D. Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (123I) ioflupane in diagnosis of parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1288–1295. [Google Scholar] [CrossRef]
- Marshall, V.L.; Reininger, C.B.; Marquardt, M.; Patterson, J.; Hadley, D.M.; Oertel, W.H.; Benamer, H.T.S.; Kemp, P.; Burn, D.; Tolosa, E.; et al. Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: A 3-year European multicenter study with repeat [123I]FP-CIT SPECT. Mov. Disord. 2009, 24, 500–508. [Google Scholar] [CrossRef]
- Marek, K.L.; Seibyl, J.P.; Zoghbi, S.S.; Zea-Ponce, Y.; Baldwin, R.M.; Fussell, B.; Charney, D.S.; van Dyck, C.; Hoffer, P.B.; Innis, R.B. [sup 123 I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 1996, 46, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Del Gamba, C.; Bruno, A.; Frosini, D.; Volterrani, D.; Migaleddu, G.; Benedetto, N.; Perrini, P.; Pacchetti, C.; Cosottini, M.; Bonuccelli, U.; et al. Is DAT imaging abnormality in normal pressure hydrocephalus always suggestive of degeneration? Neurol. Sci. 2020, 42, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Hastings, A.; Cullinane, P.; Wrigley, S.; Revesz, T.; Morris, H.R.; Dickson, J.C.; Jaunmuktane, Z.; Warner, T.T.; De Pablo-Fernández, E. Neuropathologic Validation and Diagnostic Accuracy of Presynaptic Dopaminergic Imaging in the Diagnosis of Parkinsonism. Neurology 2024, 102, e209453. [Google Scholar] [CrossRef] [PubMed]
- Chahid, Y.; Sheikh, Z.H.; Mitropoulos, M.; Booij, J. A systematic review of the potential effects of medications and drugs of abuse on dopamine transporter imaging using [123I]I-FP-CIT SPECT in routine practice. Eur. J. Nucl. Med. 2023, 50, 1974–1987. [Google Scholar] [CrossRef]
- Chen, Q.; Li, X.; Li, L.; Lu, J.; Sun, Y.; Liu, F.; Zuo, C.; Wang, J. Dopamine transporter imaging in progressive supranuclear palsy: Severe but nonspecific to subtypes. Acta Neurol. Scand. 2022, 146, 237–245. [Google Scholar] [CrossRef]
- Vijiaratnam, N.; Foltynie, T. How should we be using biomarkers in trials of disease modification in Parkinson’s disease? Brain 2023, 146, 4845–4869. [Google Scholar] [CrossRef]
- Yamashita, K.Y.; Bhoopatiraju, S.; Silverglate, B.D.; Grossberg, G.T. Biomarkers in Parkinson’s disease: A state of the art review. Biomark. Neuropsychiatry 2023, 9, 100074. [Google Scholar] [CrossRef]
- Mollenhauer, B.; Locascio, J.J.; Schulz-Schaeffer, W.; Sixel-Döring, F.; Trenkwalder, C.; Schlossmacher, M.G. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: A cohort study. Lancet Neurol. 2011, 10, 230–240, Erratum in Lancet Neurol. 2011, 10, 297. [Google Scholar] [CrossRef]
- Surguchov, A.; Surguchev, A. Synucleins: New Data on Misfolding, Aggregation and Role in Diseases. Biomedicines 2022, 10, 3241. [Google Scholar] [CrossRef]
- Majbour, N.K.; Vaikath, N.N.; van Dijk, K.D.; Ardah, M.T.; Varghese, S.; Vesterager, L.B.; Montezinho, L.P.; Poole, S.; Safieh-Garabedian, B.; Tokuda, T.; et al. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease. Mol. Neurodegener. 2016, 11, 1–15. [Google Scholar] [CrossRef]
- El-Agnaf, O.M.; Walsh, D.M.; Allsop, D. Soluble oligomers for the diagnosis of neurodegenerative diseases. Lancet Neurol. 2003, 2, 461–462. [Google Scholar] [CrossRef]
- Eller, M.; Williams, D.R. Biological fluid biomarkers in neurodegenerative parkinsonism. Nat. Rev. Neurol. 2009, 5, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Öhrfelt, A.; Grognet, P.; Andreasen, N.; Wallin, A.; Vanmechelen, E.; Blennow, K.; Zetterberg, H. Cerebrospinal fluid α-synuclein in neurodegenerative disorders—A marker of synapse loss? Neurosci. Lett. 2009, 450, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H. Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease. JAMA Neurol. 2013, 70, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Tang, H.; Nie, K.; Wang, L.; Zhao, J.; Gan, R.; Huang, J.; Zhu, R.; Feng, S.; Duan, Z.; et al. Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: A systematic review and meta-analysis. Int. J. Neurosci. 2014, 125, 645–654. [Google Scholar] [CrossRef]
- Lau, D.; Magnan, C.; Hill, K.; Cooper, A.; Gambin, Y.; Sierecki, E. Single Molecule Fingerprinting Reveals Different Amplification Properties of α-Synuclein Oligomers and Preformed Fibrils in Seeding Assay. ACS Chem. Neurosci. 2022, 13, 883–896. [Google Scholar] [CrossRef]
- Alfaidi, M.; Barker, R.A.; Kuan, W.-L. An update on immune-based alpha-synuclein trials in Parkinson’s disease. J. Neurol. 2024, 272, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fairfoul, G.; McGuire, L.I.; Pal, S.; Ironside, J.W.; Neumann, J.; Christie, S.; Joachim, C.; Esiri, M.; Evetts, S.G.; Rolinski, M.; et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann. Clin. Transl. Neurol. 2016, 3, 812–818. [Google Scholar] [CrossRef]
- Groveman, B.R.; Orrù, C.D.; Hughson, A.G.; Raymond, L.D.; Zanusso, G.; Ghetti, B.; Campbell, K.J.; Safar, J.; Galasko, D.; Caughey, B. Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol. Commun. 2018, 6, 1–10. [Google Scholar] [CrossRef]
- Concha-Marambio, L.; Pritzkow, S.; Shahnawaz, M.; Farris, C.M.; Soto, C. Seed amplification assay for the detection of pathologic alpha-synuclein aggregates in cerebrospinal fluid. Nat. Protoc. 2023, 18, 1179–1196. [Google Scholar] [CrossRef]
- Siderowf, A.; Concha-Marambio, L.; Lafontant, D.-E.; Farris, C.M.; Ma, Y.; Urenia, P.A.; Nguyen, H.; Alcalay, R.N.; Chahine, L.M.; Foroud, T.; et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: A cross-sectional study. Lancet Neurol. 2023, 22, 407–417. [Google Scholar] [CrossRef]
- Gomes, B.F.; Farris, C.M.; Ma, Y.; Concha-Marambio, L.; Lebovitz, R.; Nellgård, B.; Dalla, K.; Constantinescu, J.; Constantinescu, R.; Gobom, J.; et al. α-Synuclein seed amplification assay as a diagnostic tool for parkinsonian disorders. Park. Relat. Disord. 2023, 117, 105807. [Google Scholar] [CrossRef]
- Russo, M.J.; Orru, C.D.; Concha-Marambio, L.; Giaisi, S.; Groveman, B.R.; Farris, C.M.; Holguin, B.; Hughson, A.G.; LaFontant, D.-E.; Caspell-Garcia, C.; et al. High diagnostic performance of independent alpha-synuclein seed amplification assays for detection of early Parkinson’s disease. Acta Neuropathol. Commun. 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Bougea, A. Seeding Aggregation Assays in Lewy Bodies Disorders: A Narrative State-of-the-Art Review. Int. J. Mol. Sci. 2024, 25, 10783. [Google Scholar] [CrossRef]
- Kluge, A.; Bunk, J.; Schaeffer, E.; Drobny, A.; Xiang, W.; Knacke, H.; Bub, S.; Lückstädt, W.; Arnold, P.; Lucius, R.; et al. Detection of neuron-derived pathological α-synuclein in blood. Brain 2022, 145, 3058–3071. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, E.; Kluge, A.; Schulte, C.; Deuschle, C.; Bunk, J.; Welzel, J.; Maetzler, W.; Berg, D. Association of Misfolded α-Synuclein Derived from Neuronal Exosomes in Blood with Parkinson’s Disease Diagnosis and Duration. J. Park. Dis. 2024, 14, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, A.M.; Nemati, M.; Boros, F.A.; Hopfner, F.; Levin, J.; Mollenhauer, B.; Winkler, J.; Zerr, I.; Zunke, F.; Höglinger, G. α-Synuclein Seed Amplification Assays from Blood-Based Extracellular Vesicles in Parkinson’s Disease: An Evaluation of the Evidence. Mov. Disord. 2024, 39, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Okuzumi, A.; Hatano, T.; Matsumoto, G.; Nojiri, S.; Ueno, S.-I.; Imamichi-Tatano, Y.; Kimura, H.; Kakuta, S.; Kondo, A.; Fukuhara, T.; et al. Propagative α-synuclein seeds as serum biomarkers for synucleinopathies. Nat. Med. 2023, 29, 1448–1455. [Google Scholar] [CrossRef]
- Vivacqua, G.; Suppa, A.; Mancinelli, R.; Belvisi, D.; Fabbrini, A.; Costanzo, M.; Formica, A.; Onori, P.; Fabbrini, G.; Berardelli, A. Salivary alpha-synuclein in the diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy. Park. Relat. Disord. 2019, 63, 143–148. [Google Scholar] [CrossRef]
- Angius, F.; Mocci, I.; Ercoli, T.; Loy, F.; Fadda, L.; Palmas, M.F.; Cannas, G.; Manzin, A.; Defazio, G.; Carta, A.R. Combined measure of salivary alpha-synuclein species as diagnostic biomarker for Parkinson’s disease. J. Neurol. 2023, 270, 5613–5621. [Google Scholar] [CrossRef] [PubMed]
- Vivacqua, G.; Latorre, A.; Suppa, A.; Nardi, M.; Pietracupa, S.; Mancinelli, R.; Fabbrini, G.; Colosimo, C.; Gaudio, E.; Berardelli, A. Abnormal Salivary Total and Oligomeric Alpha-Synuclein in Parkinson’s Disease. PLoS ONE 2016, 11, e0151156. [Google Scholar] [CrossRef]
- Gibbons, C.H.; Levine, T.; Adler, C.; Bellaire, B.; Wang, N.; Stohl, J.; Agarwal, P.; Aldridge, G.M.; Barboi, A.; Evidente, V.G.H.; et al. Skin Biopsy Detection of Phosphorylated α-Synuclein in Patients With Synucleinopathies. JAMA 2024, 331, 1298–1306. [Google Scholar] [CrossRef]
- Donadio, V.; Incensi, A.; El-Agnaf, O.; Rizzo, G.; Vaikath, N.; Del Sorbo, F.; Scaglione, C.; Capellari, S.; Elia, A.; Maserati, M.S.; et al. Skin α-synuclein deposits differ in clinical variants of synucleinopathy: An in vivo study. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, C.; Wang, N.; Rajan, S.; Kern, D.; Palma, J.-A.; Kaufmann, H.; Freeman, R. Cutaneous α-Synuclein Signatures in Patients With Multiple System Atrophy and Parkinson Disease. Neurology 2023, 100, E1529–E1539. [Google Scholar] [CrossRef]
- Isaacson, J.R.; Freeman, R.; Gibbons, C.H. Clinical utility of synuclein skin biopsy in the diagnosis and evaluation of synucleinopathies. Front. Neurol. 2024, 15, 1510796. [Google Scholar] [CrossRef]
- Hutchinson, M.; Raff, U. Structural Changes of the Substantia Nigra in Parkinson’s Disease as Revealed by MR Imaging. 2000, 21, 697–701. Am. J. Neuroradiol. 2000, 21, 697–701. [Google Scholar]
- Vijayakumari, A.A.; Fernandez, H.H.; Walter, B.L. MRI-based multivariate gray matter volumetric distance for predicting motor symptom progression in Parkinson’s disease. Sci. Rep. 2023, 13, 1–8. [Google Scholar] [CrossRef]
- Vaillancourt, D.E.; Barmpoutis, A.; Wu, S.S.; DeSimone, J.C.; Schauder, M.; Chen, R.; Parrish, T.B.; Wang, W.-E.; Molho, E.; Morgan, J.C.; et al. Automated Imaging Differentiation for Parkinsonism. JAMA Neurol. 2025, 82, 495. [Google Scholar] [CrossRef] [PubMed]
- Eidelberg, D.; Moeller, J.R.; Dhawan, V.; Spetsieris, P.; Takikawa, S.; Ishikawa, T.; Chaly, T.; Robeson, W.; Margouleff, D.; Przedborski, S.; et al. The Metabolic Topography of Parkinsonism. J. Cereb. Blood Flow Metab. 1994, 14, 783–801. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, C.; Spetsieris, P.G.; Dhawan, V.; Eidelberg, D. Abnormal Metabolic Network Activity in Parkinson’S Disease: Test—Retest Reproducibility. J. Cereb. Blood Flow Metab. 2007, 27, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Echeveste, B.; Prieto, E.; Guillén, E.F.; Jimenez, A.; Montoya, G.; Villino, R.; Riverol, M.; Arbizu, J. Combination of amyloid and FDG PET for the prediction of short-term conversion from MCI to Alzheimer’s disease in the clinical practice. Eur. J. Nucl. Med. 2025, 52, 3567–3577. [Google Scholar] [CrossRef] [PubMed]
- Younes, K.; Johns, E.; Young, C.B.; Kennedy, G.; Mukherjee, S.; Vossler, H.A.; Winer, J.; Cody, K.; Henderson, V.W.; Poston, K.L.; et al. Amyloid PET predicts longitudinal functional and cognitive trajectories in a heterogeneous cohort. Alzheimer’s Dement. 2025, 21, e70075. [Google Scholar] [CrossRef] [PubMed]
- Ossenkoppele, R.; Binette, A.P.; Groot, C.; Smith, R.; Strandberg, O.; Palmqvist, S.; Stomrud, E.; Tideman, P.; Ohlsson, T.; Jögi, J.; et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 2022, 28, 2381–2387. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; Salvadó, G.; Janelidze, S.; Binette, A.P.; Bali, D.; Karlsson, L.; Palmqvist, S.; Mattsson-Carlgren, N.; Stomrud, E.; Therriault, J.; et al. Plasma p-tau217 and tau-PET predict future cognitive decline among cognitively unimpaired individuals: Implications for clinical trials. Nat. Aging 2025, 5, 1–14. [Google Scholar] [CrossRef]
- Fleisher, A.S.; Pontecorvo, M.J.; Devous, M.D.; Lu, M.; Arora, A.K.; Truocchio, S.P.; Aldea, P.; Flitter, M.; Locascio, T.; Devine, M.; et al. Positron Emission Tomography Imaging With [18F]flortaucipir and Postmortem Assessment of Alzheimer Disease Neuropathologic Changes. JAMA Neurol. 2020, 77, 829–839. [Google Scholar] [CrossRef]
- Kling, A.; Kusche-Palenga, J.; Palleis, C.; Jäck, A.; Bernhardt, A.M.; Frontzkowski, L.; Roemer, S.N.; Slemann, L.; Zaganjori, M.; Scheifele, M.; et al. Exploring the origins of frequent tau-PET signal in vermal and adjacent regions. Eur. J. Nucl. Med. 2025, 52, 3519–3533. [Google Scholar] [CrossRef]
- Lemoine, L.; Leuzy, A.; Chiotis, K.; Rodriguez-Vieitez, E.; Nordberg, A.; Wolk, D.; Villemagne, V.; Dickerson, B. Tau positron emission tomography imaging in tauopathies: The added hurdle of off-target binding. Alzheimer’s Dementia: Diagn. Assess. Dis. Monit. 2018, 10, 232–236. [Google Scholar] [CrossRef]
- Tissot, C.; Servaes, S.; Lussier, F.Z.; Ferrari-Souza, J.P.; Therriault, J.; Ferreira, P.C.; Bezgin, G.; Bellaver, B.; Leffa, D.T.; Mathotaarachchi, S.S.; et al. The Association of Age-Related and Off-Target Retention with Longitudinal Quantification of [18F]MK6240 Tau PET in Target Regions. J. Nucl. Med. 2022, 64, 452–459. [Google Scholar] [CrossRef]
- Korat, Š.; Bidesi, N.S.R.; Bonanno, F.; Di Nanni, A.; Hoàng, A.N.N.; Herfert, K.; Maurer, A.; Battisti, U.M.; Bowden, G.D.; Thonon, D.; et al. Alpha-Synuclein PET Tracer Development—An Overview about Current Efforts. Pharmaceuticals 2021, 14, 847. [Google Scholar] [CrossRef]
- Mathis, C.A.; Lopresti, B.J.; Ikonomovic, M.D.; Klunk, W.E. Small-molecule PET Tracers for Imaging Proteinopathies. Semin. Nucl. Med. 2017, 47, 553–575. [Google Scholar] [CrossRef] [PubMed]
- Alzghool, O.M.; van Dongen, G.; van de Giessen, E.; Schoonmade, L.; Beaino, W. α-Synuclein Radiotracer Development and In Vivo Imaging: Recent Advancements and New Perspectives. Mov. Disord. 2022, 37, 936–948. [Google Scholar] [CrossRef]
- Endo, H.; Ono, M.; Takado, Y.; Matsuoka, K.; Takahashi, M.; Tagai, K.; Kataoka, Y.; Hirata, K.; Takahata, K.; Seki, C.; et al. Imaging α-synuclein pathologies in animal models and patients with Parkinson’s and related diseases. Neuron 2024, 112, 2540–2557.e8. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Capotosti, F.; Schain, M.; Ohlsson, T.; Vokali, E.; Molette, J.; Touilloux, T.; Hliva, V.; Dimitrakopoulos, I.K.; Puschmann, A.; et al. The α-synuclein PET tracer [18F] ACI-12589 distinguishes multiple system atrophy from other neurodegenerative diseases. Nat. Commun. 2023, 14, 1–12. [Google Scholar] [CrossRef]
- Matsuoka, K.; Ono, M.; Takado, Y.; Hirata, K.; Endo, H.; Ohfusa, T.; Kojima, T.; Yamamoto, T.; Onishi, T.; Orihara, A.; et al. High-Contrast Imaging of α-Synuclein Pathologies in Living Patients with Multiple System Atrophy. Mov. Disord. 2022, 37, 2159–2161. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Tao, Y.; Xia, Y.; Luo, S.; Zhao, Q.; Li, B.; Zhang, X.; Sun, Y.; Xia, W.; Zhang, M.; et al. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell 2023, 186, 3350–3367.e19. [Google Scholar] [CrossRef]
- Saturnino Guarino, D.; Miranda Azpiazu, P.; Sunnemark, D.; Elmore, C.S.; Bergare, J.; Artelsmair, M.; Nordvall, G.; Forsberg Morén, A.; Jia, Z.; Cortes-Gonzalez, M.; et al. Identification and In Vitro and In Vivo Characterization of KAC-50.1 as a Potential α-Synuclein PET Radioligand. ACS Chem. Neurosci. 2024, 15, 4210–4219. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Campolo, G.; Teng, X.; Ying, L.; Edel, J.B.; Ivanov, A.P. Single-Molecule Detection of α-Synuclein Oligomers in Parkinson’s Disease Patients Using Nanopores. ACS Nano 2023, 17, 22999–23009. [Google Scholar] [CrossRef]
- Roshanbin, S.; Xiong, M.; Hultqvist, G.; Söderberg, L.; Zachrisson, O.; Meier, S.; Ekmark-Lewén, S.; Bergström, J.; Ingelsson, M.; Sehlin, D.; et al. In vivo imaging of alpha-synuclein with antibody-based PET. Neuropharmacology 2022, 208, 108985. [Google Scholar] [CrossRef]
Unmet Need | Potential Biomarker(s) |
---|---|
Differentiation between clinico-pathologic disorders | Seed amplification assay; α-synuclein skin biopsy; spatial distribution of PET tracers (e.g., [F18]ACI-12589 in MSA) |
Monitoring disease progression | Quantitative fluid biomarkers in plasma and/or CSF; PET-CT imaging |
Tracking response to therapies | Quantitative fluid biomarkers in plasma and/or CSF; PET-CT imaging |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berman, S.E.; Siderowf, A.D. Current Status of α-Synuclein Biomarkers and the Need for α-Synuclein PET Tracers. Cells 2025, 14, 1272. https://doi.org/10.3390/cells14161272
Berman SE, Siderowf AD. Current Status of α-Synuclein Biomarkers and the Need for α-Synuclein PET Tracers. Cells. 2025; 14(16):1272. https://doi.org/10.3390/cells14161272
Chicago/Turabian StyleBerman, Sara E., and Andrew D. Siderowf. 2025. "Current Status of α-Synuclein Biomarkers and the Need for α-Synuclein PET Tracers" Cells 14, no. 16: 1272. https://doi.org/10.3390/cells14161272
APA StyleBerman, S. E., & Siderowf, A. D. (2025). Current Status of α-Synuclein Biomarkers and the Need for α-Synuclein PET Tracers. Cells, 14(16), 1272. https://doi.org/10.3390/cells14161272