Discovery of N-(6-Methoxypyridin-3-yl)quinoline-2-amine Derivatives for Imaging Aggregated α-Synuclein in Parkinson’s Disease with Positron Emission Tomography
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. Alpha-Synuclein Binding Affinity Studies
2.2.1. Determination of α-Synuclein Binding Activity Using Radioactive Competitive Assays with [3H]BF2846 and [18F]7j ([18F]TZ61-44)
2.2.2. Determination of Binding Activity for AD Tissues Using [3H]PiB
2.2.3. Binding Affinity Measurements of Radiotracers [11C]7f, [18F]7j, [11C]8i, and [125I]8i and [3H]8i
2.3. Radiochemistry
2.3.1. Radiosynthesis of [11C]7f
2.3.2. Radiosynthesis of [11C]8i
2.3.3. Radiosynthesis of [18F]7j
2.3.4. Radiosynthesis of [125I]8i and [3H]8i
2.4. PET Brain Imaging Studies in Non-Human Primates
3. Results and Discussion
3.1. Design
3.2. Chemistry
3.3. Bioactivity Determination
3.3.1. Determination of α-Synuclein Activity
3.3.2. Structure–Activity Relationship Analysis
3.3.3. Determination of Binding Activity in Human Brain AD Tissues Using [3H]PiB
3.4. Radiochemistry
3.5. PET Brain Imaging Studies in Macaques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022, 23, 1851. [Google Scholar] [CrossRef] [PubMed]
- Gadhave, D.G.; Sugandhi, V.V.; Jha, S.K.; Nangare, S.N.; Gupta, G.; Singh, S.K.; Dua, K.; Cho, H.; Hansbro, P.M.; Paudel, K.R. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res. Rev. 2024, 99, 102357. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.T.; Heegaard, N.H.H. Analysis of Protein Aggregation in Neurodegenerative Disease. Anal. Chem. 2013, 85, 4215–4227. [Google Scholar] [CrossRef] [PubMed]
- Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fà, M.; Amato, A.; Palmeri, A.; D’aDamio, L.; Grassi, C.; Devanand, D.; Honig, L.S.; et al. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade. J. Alzheimer’s Dis. 2018, 64, S611–S631. [Google Scholar] [CrossRef] [PubMed]
- Hyare, H.; Yousry, T. Human Prion Diseases. In Brain Mapping; Toga, A.W., Ed.; Academic Press: Waltham, MA, USA, 2015; Volume 3, pp. 683–691. [Google Scholar] [CrossRef]
- Meyer, P.-F.; McSweeney, M.; Gonneaud, J.; Villeneuve, S. AD molecular: PET amyloid imaging across the Alzheimer’s disease spectrum: From disease mechanisms to prevention. Prog. Mol. Biol. Transl. Sci. 2019, 165, 63–106. [Google Scholar] [CrossRef] [PubMed]
- Heurling, K.; Leuzy, A.; Zimmer, E.R.; Lubberink, M.; Nordberg, A. Imaging β-amyloid using [18F]flutemetamol positron emission tomography: From dosimetry to clinical diagnosis. Eur. J. Nucl. Med. 2015, 43, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Uzuegbunam, B.C.; Librizzi, D.; Yousefi, B.H. PET Radiopharmaceuticals for Alzheimer’s Disease and Parkinson’s Disease Diagnosis, the Current and Future Landscape. Molecules 2020, 25, 977. [Google Scholar] [CrossRef] [PubMed]
- Beyer, L.; Brendel, M. Imaging of Tau Pathology in Neurodegenerative Diseases: An Update. Semin. Nucl. Med. 2021, 51, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Burnham, S.C.; Iaccarino, L.; Pontecorvo, M.J.; Fleisher, A.S.; Lu, M.; Collins, E.C.; Devous, M.D. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun. 2023, 6, 305. [Google Scholar] [CrossRef] [PubMed]
- Jie, C.V.M.L.; Treyer, V.; Schibli, R.; Mu, L. Tauvid™: The First FDA-Approved PET Tracer for Imaging Tau Pathology in Alzheimer’s Disease. Pharmaceuticals 2021, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Wang, L.; Liu, W.; Zhu, G.; Chen, Y.; Zhang, J. Biomarkers and the Role of α-Synuclein in Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 645996. [Google Scholar] [CrossRef] [PubMed]
- Furumoto, S.; Okamura, N.; Furukawa, K.; Tashiro, M.; Ishikawa, Y.; Sugi, K.; Tomita, N.; Waragai, M.; Harada, R.; Tago, T.; et al. A 18F-Labeled BF-227 Derivative as a Potential Radioligand for Imaging Dense Amyloid Plaques by Positron Emission Tomography. Mol. Imaging Biol. 2013, 15, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Cui, J.; Padakanti, P.K.; Engel, L.; Bagchi, D.P.; Kotzbauer, P.T.; Tu, Z. Synthesis and in vitro evaluation of α-synuclein ligands. Bioorganic Med. Chem. 2012, 20, 4625–4634. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Zhou, D.; Gaba, V.; Liu, J.; Li, S.; Peng, X.; Xu, J.; Dhavale, D.; Bagchi, D.P.; d’Avignon, A.; et al. Design, Synthesis, and Characterization of 3-(Benzylidene)indolin-2-one Derivatives as Ligands for alpha-Synuclein Fibrils. J. Med. Chem. 2015, 58, 6002–6017. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Tao, Y.; Xia, Y.; Luo, S.; Zhao, Q.; Li, B.; Zhang, X.; Sun, Y.; Xia, W.; Zhang, M.; et al. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell 2023, 186, 3350–3367. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xiang, J.; Ye, K.; Zhang, Z. Development of Positron Emission Tomography Radiotracers for Imaging α-Synuclein Aggregates. Cells 2025, 14, 907. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, R. Determination of lipophilicity and its use as a predictor of blood–brain barrier penetration of molecular imaging agents. Mol. Imaging Biol. 2003, 5, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Waring, M.J. Lipophilicity in drug discovery. Expert Opin. Drug Discov. 2010, 5, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Fichert, T.; Yazdanian, M.; Proudfoot, J.R. A structure–Permeability study of small drug-like molecules. Bioorg. Med. Chem. Lett. 2003, 13, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. Neurotherapeutics 2005, 2, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, X.; Zhang, Z.; Padakanti, P.K.; Jin, H.; Cui, J.; Li, A.; Zeng, D.; Rath, N.P.; Flores, H.; et al. Heteroaromatic and Aniline Derivatives of Piperidines As Potent Ligands for Vesicular Acetylcholine Transporter. J. Med. Chem. 2013, 56, 6216–6233. [Google Scholar] [CrossRef] [PubMed]
- Parrasia, S.; Szabò, I.; Zoratti, M.; Biasutto, L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol. Pharm. 2022, 19, 3700–3729. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Liu, Y.-Q.; He, J.; Lin, X.; Qiu, C.-Y.; Yu, W.-B.; Shen, Y.; Zhu, Z.-Y.; Ye, D.-Y.; Wang, J.; et al. Discovery of styrylaniline derivatives as novel alpha-synuclein aggregates ligands. Eur. J. Med. Chem. 2021, 226, 113887. [Google Scholar] [CrossRef] [PubMed]
- Korat, Š.; Bidesi, N.S.R.; Bonanno, F.; Di Nanni, A.; Hoàng, A.N.N.; Herfert, K.; Maurer, A.; Battisti, U.M.; Bowden, G.D.; Thonon, D.; et al. Alpha-Synuclein PET Tracer Development—An Overview about Current Efforts. Pharmaceuticals 2021, 14, 847. [Google Scholar] [CrossRef] [PubMed]
- Alzghool, O.M.; van Dongen, G.; van de Giessen, E.; Schoonmade, L.; Beaino, W. α-Synuclein Radiotracer Development and In Vivo Imaging: Recent Advancements and New Perspectives. Mov. Disord. 2022, 37, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Kaide, S.; Watanabe, H.; Iikuni, S.; Hasegawa, M.; Itoh, K.; Ono, M. Chalcone Analogue as New Candidate for Selective Detection of α-Synuclein Pathology. ACS Chem. Neurosci. 2021, 13, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Kaide, S.; Watanabe, H.; Iikuni, S.; Hasegawa, M.; Ono, M. Synthesis and Evaluation of 18F-Labeled Chalcone Analogue for Detection of α-Synuclein Aggregates in the Brain Using the Mouse Model. ACS Chem. Neurosci. 2022, 13, 2982–2990. [Google Scholar] [CrossRef] [PubMed]
- Kallinen, A.; Kassiou, M. Tracer development for PET imaging of proteinopathies. Nucl. Med. Biol. 2022, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Roshanbin, S.; Xiong, M.; Hultqvist, G.; Söderberg, L.; Zachrisson, O.; Meier, S.; Ekmark-Lewén, S.; Bergström, J.; Ingelsson, M.; Sehlin, D.; et al. In vivo imaging of alpha-synuclein with antibody-based PET. Neuropharmacology 2022, 208, 108985. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Cui, M. Current Progress in the Development of Probes for Targeting α-Synuclein Aggregates. ACS Chem. Neurosci. 2022, 13, 552–571. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Capotosti, F.; Schain, M.; Ohlsson, T.; Vokali, E.; Molette, J.; Touilloux, T.; Hliva, V.; Dimitrakopoulos, I.K.; Puschmann, A.; et al. The α-synuclein PET tracer [18F] ACI-12589 distinguishes multiple system atrophy from other neurodegenerative diseases. Nat. Commun. 2023, 14, 6750. [Google Scholar] [CrossRef] [PubMed]
- Dhavale, D.D.; Barclay, A.M.; Borcik, C.G.; Basore, K.; Berthold, D.A.; Gordon, I.R.; Liu, J.; Milchberg, M.H.; O’sHea, J.Y.; Rau, M.J.; et al. Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue. Nat. Commun. 2024, 15, 2750. [Google Scholar] [CrossRef] [PubMed]
- Beach, T.G.; Adler, C.H.; Sue, L.I.; Serrano, G.; Shill, H.A.; Walker, D.G.; Lue, L.; Roher, A.E.; Dugger, B.N.; Maarouf, C.; et al. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program. Neuropathology 2015, 35, 354–389. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-J.; Ferrie, J.J.; Xu, K.; Lee, I.; Graham, T.J.A.; Tu, Z.; Yu, J.; Dhavale, D.; Kotzbauer, P.; Petersson, E.J.; et al. Alpha Synuclein Fibrils Contain Multiple Binding Sites for Small Molecules. ACS Chem. Neurosci. 2018, 9, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Chia, W.K.; Hsieh, C.-J.; Guarino, D.S.; Graham, T.J.A.; Lengyel-Zhand, Z.; Schneider, M.; Tomita, C.; Lougee, M.G.; Kim, H.J.; et al. A Novel Brain PET Radiotracer for Imaging Alpha Synuclein Fibrils in Multiple System Atrophy. J. Med. Chem. 2023, 66, 12185–12202. [Google Scholar] [CrossRef] [PubMed]
Comp# | NO. | Quinolinyl Moiety | Ki (nM) a | cLogP b |
---|---|---|---|---|
3a | TZ80-157 | ~100 | 3.98 | |
3b | TZ90-14 | 10 | 3.77 | |
3c | TZ64-26 | 418 | 3.98 | |
3d | TZ64-29 | NB | 3.89 | |
3e | TZ64-27 | 46 | 3.68 | |
3f | TZ64-28 | NB | 3.68 | |
3g | TZ64-33 | NB | 3.89 |
Comp# | NO. | R | Ki (nM) a | cLogP b |
---|---|---|---|---|
5a | TZ64-14 | 3-F | NA | 4.17 |
5b | TZ64-66 | 4-F | 65 | 4.17 |
5c | TZ64-15 | 5-F | 33 | 4.15 |
5d | TZ64-13 | 6-F | 27 | 4.15 |
5e | TZ64-68 | 7-F | 53 | 4.15 |
5f | TZ64-16 | 8-F | 41 | 4.15 |
7a | TZ64-55 | 6-NO2 | 21 | 3.81 |
7b | TZ90-11 | 6-N(Me)2 | NA | 4.56 |
7c | TZ90-12 | 6-NH2 | 82 | 3.43 |
7d | TZ64-105 | 6-Br | 18.7 | 4.87 |
7e | TZ64-111 | 6-OH | 70 | 4.03 |
7f | TZ55-107 | 6-OMe | 4.6 | 4.25 |
7g | TZ80-37 | 6-OCF2H | 23 | 4.70 |
7h | TZ90-17 | 6-OCF3 | ~100 | 5.36 |
7i | TZ80-151 | 6-OSO2F | 320 | 2.40 |
7j | TZ61-44 | 6-OCH2CH2F | 6.4 | 4.50 |
Compound | NO. | Ki (nM) a | cLogP b | Compound | NO. | Ki (nM) a | cLogP b |
---|---|---|---|---|---|---|---|
7k | TZ80-14 | 50 | 4.25 | 8a | TZ80-54 | >500 | 3.85 |
7l | TZ80-15 | 49 | 4.08 | 8b | TZ80-52 | >500 | 6.28 |
7m | TZ80-16 | 42 | 3.90 | 8c | TZ80-40 | 47.7 | 6.02 |
7n | TZ77-107 | 397 | 3.65 | 8d | TZ80-42 | 16.6 | 4.52 |
7o | TZ80-3 | 182 | 4.44 | 8e | TZ80-66-B | 24 | 4.52 |
7p | TZ80-4 | 81 | 4.69 | 8f | TZ80-76 | 20 | 5.94 |
7q | TZ90-5 | 10 | 5.36 | 8g | TZ80-77 | 36 | 5.94 |
7r | TZ80-98 | 197 | 4.60 | 8h | TZ80-44 | 66.3 | 6.16 |
7s | TZ80-55 | 26.1 | 4.21 | 8i | TZ61-84 | 5.0 | 5.80 |
7t | TZ80-53 | >500 | 3.71 | 8j | TZ80-102 | > 1000 | 5.84 |
7u | TZ80-58 | 44.6 | 5.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Huang, T.; Dhavale, D.D.; O’Shea, J.Y.; Lengyel-Zhand, Z.; Guarino, D.S.; Gu, J.; Yue, X.; Nai, Y.-H.; Jiang, H.; et al. Discovery of N-(6-Methoxypyridin-3-yl)quinoline-2-amine Derivatives for Imaging Aggregated α-Synuclein in Parkinson’s Disease with Positron Emission Tomography. Cells 2025, 14, 1108. https://doi.org/10.3390/cells14141108
Zhao H, Huang T, Dhavale DD, O’Shea JY, Lengyel-Zhand Z, Guarino DS, Gu J, Yue X, Nai Y-H, Jiang H, et al. Discovery of N-(6-Methoxypyridin-3-yl)quinoline-2-amine Derivatives for Imaging Aggregated α-Synuclein in Parkinson’s Disease with Positron Emission Tomography. Cells. 2025; 14(14):1108. https://doi.org/10.3390/cells14141108
Chicago/Turabian StyleZhao, Haiyang, Tianyu Huang, Dhruva D. Dhavale, Jennifer Y. O’Shea, Zsofia Lengyel-Zhand, Dinahlee Saturnino Guarino, Jiwei Gu, Xuyi Yue, Ying-Hwey Nai, Hao Jiang, and et al. 2025. "Discovery of N-(6-Methoxypyridin-3-yl)quinoline-2-amine Derivatives for Imaging Aggregated α-Synuclein in Parkinson’s Disease with Positron Emission Tomography" Cells 14, no. 14: 1108. https://doi.org/10.3390/cells14141108
APA StyleZhao, H., Huang, T., Dhavale, D. D., O’Shea, J. Y., Lengyel-Zhand, Z., Guarino, D. S., Gu, J., Yue, X., Nai, Y.-H., Jiang, H., Lougee, M. G., Pagar, V. V., Kim, H. J., Garcia, B. A., Petersson, E. J., Mathis, C. A., Kotzbauer, P. T., Perlmutter, J. S., Mach, R. H., & Tu, Z. (2025). Discovery of N-(6-Methoxypyridin-3-yl)quinoline-2-amine Derivatives for Imaging Aggregated α-Synuclein in Parkinson’s Disease with Positron Emission Tomography. Cells, 14(14), 1108. https://doi.org/10.3390/cells14141108