mRNA Vaccines and Therapeutics in Melanoma: From Mechanisms to Cellular Impact

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Cellular Pathology".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 755

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy
Interests: biochemistry; clinical biochemistry; oncology; molecular biology; meta-analysis

E-Mail Website
Guest Editor
Department of Biomedical Science, National Institute of Biostructures and Biosystems, University of Sassari, 07100 Sassari, Italy
Interests: cancer epigenetics; rhabdomyosarcoma; EZH2; SCLC; MYC; small molecules; nanoparticles; cytotoxicity; cell proliferation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

mRNA vaccines have emerged as a groundbreaking tool in the fight against various diseases, including cancer. Building on the success of mRNA-based vaccines for infectious diseases, such as COVID-19, researchers are exploring their potential in oncology. This Special Issue aims to delve into the recent advancements, challenges, and future directions of mRNA vaccines in the context of cancer immunotherapy. Topics of interest include in vitro studies, novel mRNA vaccine designs, delivery systems, and their role in stimulating robust antitumor immune responses. Additionally, we seek contributions on the integration of mRNA vaccines with other therapeutic modalities, such as immune checkpoint inhibitors and personalized medicine approaches. By gathering the latest insights from experts in the field, this Special Issue aims to highlight how mRNA vaccines could reshape cancer treatment, offering new hope for patients and advancing our understanding of tumor immunology. We invite researchers to submit their work and contribute to this emerging and rapidly evolving field.

Dr. Stefano Zoroddu
Prof. Dr. Luigi M. Bagella
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mRNA vaccines
  • melanoma
  • tumor immunology
  • mRNA vaccine designs
  • delivery systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 836 KB  
Article
mRNA Multipeptide-HLA Class II Immunotherapy for Melanoma
by Apostolos P. Georgopoulos, Lisa M. James and Matthew Sanders
Cells 2025, 14(18), 1430; https://doi.org/10.3390/cells14181430 - 12 Sep 2025
Viewed by 242
Abstract
Human Leukocyte Antigen (HLA) Class II (HLA-II) molecules bind peptides of phagocytosed non-self proteins and present them on the cell surface to circulating CD4+ T lymphocytes. A successful binding of the presented peptide with the T cell receptor (TCR) activates the CD4+ T [...] Read more.
Human Leukocyte Antigen (HLA) Class II (HLA-II) molecules bind peptides of phagocytosed non-self proteins and present them on the cell surface to circulating CD4+ T lymphocytes. A successful binding of the presented peptide with the T cell receptor (TCR) activates the CD4+ T cell, leading to the production of antibodies against the peptide (and the protein of its origin) by the B cell and augmentation of the cytotoxic and memory functions of CD8+ T cells. The first and essential step in this process is the successful formation of a stable peptide-HLA-II complex (pHLA-II), which is achieved when the peptide binds with high affinity to the HLA-II molecule. Such highly antigenic non-self peptides occur in melanoma-associated proteins and could be used as antitumor agents when bound to a matching HLA-II molecule. The objective of this study was to identify such peptides from 15 melanoma-associated proteins. We determined in silico the predicted binding affinity (IC50) of all pHLA-II pairs between 192 common HLA-II molecules and all possible linear 15-amino acid (15-mer) peptides (epitopes) of 15 known melanoma-associated antigens (N = 3466 epitopes) for a total of 192 × 3466 = 665,472 determinations. From this set, we identified epitopes with strong antigenicity (predicted best binding affinity [PBBA] IC50 < 50 nM). Of a total of 665,472 pHLA-II tested, 5941 (0.89%) showed strong PBBA, stemming from 117 HLA-II alleles and 679 distinct epitopes. This set of 5941 pHLA-II pairs with predicted high antigenicity possesses the requisite information for devising multipeptide vaccines with those epitopes alone or in combination with the corresponding HLA-II molecules. The results obtained have a major implication for cancer therapy, namely that the administration of subsets of the 679 high antigenicity epitopes above, alone or in combination with their associated HLA-II molecules, would be successful in engaging CD4+ T helper lymphocytes to augment the cytotoxic action and memory of CD8+ T lymphocytes and induce the production of antitumor antibodies by B cells. This therapy would be effective in other solid tumors (in addition to melanoma) and would be enhanced by concomitant immunotherapy with immune checkpoint inhibitors. Full article
Show Figures

Figure 1

Back to TopTop