Morphological Regulation of Bi5O7I for Enhanced Efficiency of Rhodamine B Degradation Under Visible-Light
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Comparison of Photocatalytic Properties of Bi5O7I NB, Bi5O7I NS and Bi5O7I NT
2.3. Optimisation of Reaction Conditions for Degradation of Bi5O7I NB
2.3.1. Effect of RhB Concentration
2.3.2. Effects of pH Value of Initial Solution on Degradation Effect
2.3.3. Effects of Ion Strength on Degradation
2.4. Photochemical Analysis and Investigation of Photocatalytic Mechanisms
2.4.1. Optical and Electrochemical Properties
2.4.2. Free Radical Quenching Experiment and Photocatalytic Mechanism Investigation
2.5. Possible Transformation Pathways of the RhB Degradation
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Synthesis of Catalysts
3.2.1. Synthesis of Bi5O7I Nanotubes (Bi5O7I NT) Photocatalyst
3.2.2. Synthesis of Bi5O7I Nanosheets (Bi5O7I NS) Photocatalyst
3.2.3. Synthesis of Bi5O7I Nanoballs (Bi5O7I NB) Photocatalyst
3.3. Characterization Techniques and Degradation Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rojas, S.; Horcajada, P. Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem. Rev. 2020, 120, 8378–8415. [Google Scholar] [CrossRef]
- Hu, A.; Jang, K.-S.; Tanentzap, A.J.; Zhao, W.; Lennon, J.T.; Liu, J.; Li, M.; Stegen, J.; Choi, M.; Lu, Y.; et al. Thermal Responses of Dissolved Organic Matter under Global Change. Nat. Commun. 2024, 15, 576. [Google Scholar] [CrossRef]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A Review on Environmental Monitoring of Water Organic Pollutants Identified by EU Guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q.S.; Zhou, Q.; Jiang, G. Environmental Pollution, a Hidden Culprit for Health Issues. Eco-Environ. Health 2022, 1, 31–45. [Google Scholar] [CrossRef]
- Shobier, A.H.; Shabaka, S.H.; El-Sayed, A.A.M.; Shreadah, M.A.; Abdel Ghani, S.A. Assessment of Persistent and Emerging Pollutants Levels in Marine Bivalves in the Gulf of Suez, Egypt. Mar. Pollut. Bull. 2024, 208, 117000. [Google Scholar] [CrossRef]
- Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Hérnandez, S.; Cauda, V. Sonophotocatalytic Degradation Mechanisms of Rhodamine B Dye via Radicals Generation by Micro- and Nano-Particles of ZnO. Appl. Catal. B Environ. 2019, 243, 629–640. [Google Scholar] [CrossRef]
- Oviedo, L.R.; Druzian, D.M.; Nora, L.D.D.; Da Silva, W.L. Study of Machine Learning on the Photocatalytic Activity of a Novel Nanozeolite for the Application in the Rhodamine B Dye Degradation. Catal. Today 2025, 443, 114986. [Google Scholar] [CrossRef]
- Mei, J.; Tao, Y.; Gao, C.; Zhu, Q.; Zhang, H.; Yu, J.; Fang, Z.; Xu, H.; Wang, Y.; Li, G. Photo-Induced Dye-Sensitized BiPO4/BiOCl System for STablely Treating Persistent Organic Pollutants. Appl. Catal. B Environ. 2021, 285, 119841. [Google Scholar] [CrossRef]
- Saravanan, S.; Carolin C, F.; Kumar, P.S.; Chitra, B.; Rangasamy, G. Biodegradation of Textile Dye Rhodamine-B by Brevundimonas Diminuta and Screening of Their Breakdown MeTableolites. Chemosphere 2022, 308, 136266. [Google Scholar] [CrossRef]
- Tirkey, N.; Mishra, S. Evaluation of Neem Gum-Poly(Acrylic Acid) Based Adsorbent for Cationic Dye Removal Using Adsorption Isotherm, Kinetics and Thermodynamics: Linear Regression Models. Int. J. Biol. Macromol. 2025, 307, 142059. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wu, Y.; Jiang, Q.; Sun, S.; Wang, J.; Gao, Y.; Zhang, W.; Du, Q.; Song, X. Pyrolyzed Sediment Accelerates Electron Transfer and Regulates Rhodamine B Biodegradation. Sci. Total Environ. 2023, 905, 167126. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Guo, H.; Chai, C.; Li, N.; Lin, X.; Xu, W. Anodized Graphite Felt as an Efficient Cathode for In-Situ Hydrogen Peroxide Production and Electro-Fenton Degradation of Rhodamine B. Chemosphere 2022, 286, 131936. [Google Scholar] [CrossRef]
- Wang, T.; Wang, W.; Zhu, Y.; Zhang, B. Electro-Fenton Degradation of Rhodamine B with in-Situ H2O2 Generation by Au Nanoparticles Modified Reduced Graphene Oxide. J. Environ. Chem. Eng. 2025, 13, 115685. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, T.; Wang, X.; Zhang, L.; Zhao, C.; Wu, W.; Zhu, G.; Jia, Y. Natural Tourmaline for Pyroelectric Dye Decomposition under 25–60 °C Room-Temperature Cold-Hot Fluctuation. Sep. Purif. Technol. 2023, 327, 124971. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, L.; Lyu, Y.; Zhang, J.; Wu, F.; Zhang, X.; Xiong, W.; He, B.; Yi, H. Adsorption Mechanism of Rhodamine Wastewater in the MOFs Materials: Effect of Metal Center and Organic Ligand. Sep. Purif. Technol. 2025, 363, 132056. [Google Scholar] [CrossRef]
- Pedebos, M.E.S.; Druzian, D.M.; Oviedo, L.R.; Ruiz, Y.P.M.; Galembeck, A.; Pavoski, G.; Espinosa, D.C.R.; Da Silva, W.L. Removal of Rhodamine B Dye by Adsorption onto an Eco-Friendly Zeolite and Machine Learning Modeling. J. Photochem. Photobiol. Chem. 2024, 449, 115404. [Google Scholar] [CrossRef]
- Li, G.; Cai, Z.; Su, K.; Zhao, Y.; Zhu, Y.; Han, J.; Pan, Y.; Xing, W.; Wu, G. Peroxymonosulfate Activation with Co3O4 by Microstructure Engineering for Efficient Degradation of Tetracycline: Efficiency, Mechanism and Stableility. Colloids Surf. Physicochem. Eng. Asp. 2023, 677, 132353. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Li, G.; Han, F.; Hu, D.; Huang, X.; Yuan, H.; Tan, Y. Hollow Co/CoO/Carbon Nanofibers Promoted PMS Decomposition for the Degradation of Rhodamine B. J. Mater. Sci. Technol. 2023, 157, 120–129. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, X.; Cheng, Z.; Xu, Q.; Zhang, X.; Liu, Y.; Qiu, F. Peroxymonosulfate (PMS) Activated by Magnetic Fe3O4 Doped Carbon Quantum Dots (CQDs) for Degradation of Rhodamine B (RhB) under Visible Light: DFT Calculations and Mechanism Analysis. J. Clean. Prod. 2023, 426, 139202. [Google Scholar] [CrossRef]
- Song, T.; Li, G.; Hu, R.; Liu, Y.; Liu, H.; Gao, Y. Degradation of Antibiotics via UV-Activated Peroxodisulfate or Peroxymonosulfate: A Review. Catalysts 2022, 12, 1025. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, W.; Yu, Z.; Ge, S.; Shao, Q.; Pan, D.; Liu, B.; Wang, X.; Guo, Z. Microwave Hydrothermally Synthesized WO3/UiO-66 Nanocomposites toward Enhanced Photocatalytic Degradation of Rhodamine B. Adv. Compos. Hybrid Mater. 2021, 4, 1330–1342. [Google Scholar] [CrossRef]
- Asgari, S.; Mohammadi Ziarani, G.; Badiei, A.; Vasseghian, Y. Zr-UiO-66, Ionic Liquid (HMIM+TFSI−), and Electrospun Nanofibers (Polyacrylonitrile): All in One as a Piezo-Photocatalyst for Degradation of Organic Dye. Chem. Eng. J. 2024, 487, 150600. [Google Scholar] [CrossRef]
- Qaraah, F.A.; Mahyoub, S.A.; Hezam, A.; Qaraah, A.; Drmosh, Q.A.; Xiu, G. Construction of 3D Flowers-like O-Doped g-C3N4-[N-Doped Nb2O5/C] Heterostructure with Direct S-Scheme Charge Transport and Highly Improved Visible-Light-Driven Photocatalytic Efficiency. Chin. J. Catal. 2022, 43, 2637–2651. [Google Scholar] [CrossRef]
- Qiu, L.; Li, H.; Xu, W.; Zhu, R.; Ouyang, F. TiO2 Catalysts Co-Modified with Bi, F, SnO2, and SiO2 for Photocatalytic Degradation of Rhodamine B Under Simulated Sunlight. Catalysts 2024, 14, 735. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.W. Photocatalytic Degradation of Eriochrome Black-T Using BaWO4/MoS2 Composite. Catalysts 2022, 12, 1290. [Google Scholar] [CrossRef]
- Akti, F. Photocatalytic Degradation of Remazol Yellow Using Polyaniline–Doped Tin Oxide Hybrid Photocatalysts with Diatomite Support. Appl. Surf. Sci. 2018, 455, 931–939. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, S.; Liu, J.; Zhang, Y.; Wang, Y.; Yu, J.; Yuan, M.; Zhang, P.; Liu, W.; Zhang, J. C, F Co-Doping Ag/TiO2 with Visible Light Photocatalytic Performance toward Degrading Rhodamine B. Environ. Res. 2023, 232, 116311. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Chen, B.B.; Chang, S.; Lv, J.; Li, D.W. Room-Temperature Growth of Morphoplastic Scandium Nanowires through Coordination-Induced Self-Assembly for White-Light-Driven Photocatalytic Degradation of Rhodamine. ACS Appl. Nano Mater. 2023, 6, 11747–11753. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Huang, J.; Li, S.; Meng, A.; Li, Z. Interfacial Chemical Bond and Internal Electric Field Modulated Z-Scheme Sv-ZnIn2S4/MoSe2 Photocatalyst for Efficient Hydrogen Evolution. Nat. Commun. 2021, 12, 4112. [Google Scholar] [CrossRef]
- Hassan, G.K.; Mahmoud, W.H.; Al-sayed, A.; Ismail, S.H.; El-Sherif, A.A.; Abd El Wahab, S.M. Multi-Functional of TiO2@Ag Core–Shell Nanostructure to Prevent Hydrogen Sulfide Formation during Anaerobic Digestion of Sewage Sludge with Boosting of Bio-CH4 Production. Fuel 2023, 333, 126608. [Google Scholar] [CrossRef]
- Viruthagiri, G.; Kannan, P.; Shanmugam, N. Photocatalytic Rendition of Zn2+-Doped Bi2O3 Nanoparticles. Photonics Nanostruct.-Fundam. Appl. 2018, 32, 35–41. [Google Scholar] [CrossRef]
- Shang, J.; Chen, T.; Wang, X.; Sun, L.; Su, Q. Facile Fabrication and Enhanced Photocatalytic Performance: From BiOCl to Element-Doped BiOCl. Chem. Phys. Lett. 2018, 706, 483–487. [Google Scholar] [CrossRef]
- Yang, J.; Xu, L.; Liu, C.; Xie, T. Preparation and Photocatalytic Activity of Porous Bi5O7I Nanosheets. Appl. Surf. Sci. 2014, 319, 265–271. [Google Scholar] [CrossRef]
- Ding, H.; Guan, Y.; Wang, Z.; Yamauchi, Y.; Asakura, Y.; Han, Q. Effect of Phase Structure of Bi5O7I on the Photocatalytic Activity of S-Scheme AgBr/Ag/Bi5O7I. J. Alloys Compd. 2024, 1002, 175215. [Google Scholar] [CrossRef]
- Li, X.; Chen, T.; Lin, H.; Cao, J.; Huang, H.; Chen, S. Intensive Photocatalytic Activity Enhancement of Bi5O7I via Coupling with Band Structure and Content AdjusTablele BiOBrxI1-x. Sci. Bull. 2018, 63, 219–227. [Google Scholar] [CrossRef]
- Yu, H.; He, Z.; Zhang, Y.; Ng, L.S.; Ni, J.; Guo, F.; Hu, J.; Lee, H.K.; Han, J. In Situ Reversible Assembly of Atomic Interfacial Structure in BiOI/Bi5O7I p-n Heterojunctions to Promote Visible-Light Photocatalysis. Chem. Eng. J. 2024, 481, 148350. [Google Scholar] [CrossRef]
- Wu, H.; Peng, J.; Sun, H.; Ruan, Q.; Dong, H.; Jin, Y.; Sun, Z.; Hu, Y. Surface Activation of Calcium Tungstate by Europium Doping for Improving Photocatalytic Performance: Towards Lanthanide Site Photocatalysis. Chem. Eng. J. 2022, 432, 134339. [Google Scholar] [CrossRef]
- Siao, C.W.; Chen, H.L.; Chen, L.W.; Chang, J.L.; Yeh, T.W.; Chen, C.C. Controlled Hydrothermal Synthesis of Bismuth Oxychloride/Bismuth Oxybromide/Bismuth Oxyiodide Composites Exhibiting Visible-Light Photocatalytic Degradation of 2-Hydroxybenzoic Acid and Crystal Violet. J. Colloid Interface Sci. 2018, 526, 322–336. [Google Scholar] [CrossRef]
- He, D.; Wang, C.; Zhao, R.; Lu, X.; Yang, M.; Qiu, J.; Wang, K.; Wang, C. BiOX (X = Cl, Br, I)/WO3/Polyacrylonitrile Nanofibrous Membranes for Diagnostic X-Ray Shielding and Visible-Light Photocatalysis. ACS Appl. Nano Mater. 2022, 5, 4157–4169. [Google Scholar]
- Zhou, Y.; Liang, Z.; Zheng, W.; Dong, J.; Chang, C.; Wang, Q.; Li, Y.; Liu, T.; Wen, J.; Zheng, X. Construction of G-C3N4-Loaded BiOCl0.5I0.5 Dual-Z-Scheme Heterojunction for Photocatalytic Reduction of CO2 and RhB Degradation. Colloids Surf. Physicochem. Eng. Asp. 2024, 702, 134968. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Huang, B.; Ma, X.; Wang, G.; Dai, Y.; Zhang, X.; Qin, X. Synthesis of Mn-Doped ZnS Microspheres with Enhanced Visible Light Photocatalytic Activity. Appl. Surf. Sci. 2017, 391, 557–564. [Google Scholar] [CrossRef]
- Cao, J.; Li, X.; Lin, H.; Xu, B.; Luo, B.; Chen, S. Low Temperature Synthesis of Novel Rodlike Bi5O7I with Visible Light Photocatalytic Performance. Mater. Lett. 2012, 76, 181–183. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, Y.; Lin, S.; Hu, Y.; Tian, N.; Huang, H. Room-Temperature Controllable Synthesis of Bi5O7INanostrips for Improved Photocatalytic Activity. Colloids Surf. Physicochem. Eng. Asp. 2020, 594, 124642. [Google Scholar] [CrossRef]
- Hojamberdiev, M.; Zhu, G.; Li, S.; Zhang, Y.; Gao, J.; Zhu, R.; Zhang, F. Er3+-Doping Induced Formation of Orthorhombic/Monoclinic Bi5O7I Heterostructure with Enhanced Visible-Light Photocatalytic Activity for Removal of Contaminants. Mater. Res. Bull. 2020, 123, 110701. [Google Scholar] [CrossRef]
- Li, P.; Wu, Q.; Ji, Q.; Abdeta, A.B.; Kuo, D.-H.; Huang, T.; Zhang, H.; Zelekew, O.A.; Lin, J.; Chen, X. Sulfur-Doped Sb4Mo10O31 Bimetallic Sulfur-Oxide Catalyst for Highly Efficient Reduction of Toxic Organic and Hexavalent Chromium under Dark. J. Environ. Chem. Eng. 2023, 11, 110700. [Google Scholar] [CrossRef]
- Chen, C.C.; Fu, J.Y.; Chang, J.L.; Huang, S.T.; Yeh, T.W.; Hung, J.T.; Huang, P.H.; Liu, F.Y.; Chen, L.W. Bismuth Oxyfluoride/Bismuth Oxyiodide Nanocomposites Enhance Visible-Light-Driven Photocatalytic Activity. J. Colloid Interface Sci. 2018, 532, 375–386. [Google Scholar] [CrossRef]
- Su, Z.; Ye, C.; Xu, Y.; Wu, B.; Kuo, D.-H.; Wu, X.; Yang, B.; Zhang, P.; Chen, L.; Lu, D.; et al. Synergistic Vacancy Defects and the Surface Hydrophobic-to-Superhydrophilic Wetting Engineering in W/S Co-Doped BiOI for Enhanced Photocatalytic Hydrogen Evolution. Chem. Eng. J. 2024, 496, 154282. [Google Scholar] [CrossRef]
- Ptaszkowska-Koniarz, M.; Goscianska, J.; Pietrzak, R. Removal of Rhodamine B from Water by Modified Carbon Xerogels. Colloids Surf. A Physicochem. Eng. Asp. 2018, 543, 109–117. [Google Scholar] [CrossRef]
- Gu, J.; Luo, C.; Zhou, W.; Tong, Z.; Zhang, H.; Zhang, P.; Ren, X. Degradation of Rhodamine B in Aqueous Solution by Laser Cavitation. Ultrason. Sonochem. 2020, 68, 105181. [Google Scholar] [CrossRef] [PubMed]
- Hovan, A.; Sedláková, D.; Lee, O.S.; Bánó, G.; Sedlák, E. pH Modulates Efficiency of Singlet Oxygen Production by Flavin Cofactors. RSC Adv. 2024, 14, 28783–28790. [Google Scholar] [CrossRef]
- Mao, X.; Fan, C.; Zhang, X.; Wang, Y.; Wang, Y.; Ding, G. Effect of Chlorine Ion on the Crystalline and Photocatalytic Activity of BiOCl for the Degradation of Rhodamine B. Cryst. Res. Technol. 2013, 48, 496–504. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Huang, C.P.; Doong, R. Photocatalytic Degradation of Bisphenol A over a ZnFe2O4/TiO2 Nanocomposite under Visible Light. Sci. Total Environ. 2019, 646, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Zhang, J.B.; Gharbi, O.; Vivier, V.; Gao, M.; Orazem, M.E. Electrochemical Impedance Spectroscopy. Nat. Rev. Methods Primers 2021, 1, 42. [Google Scholar] [CrossRef]
- Manohar, A.; Suvarna, T.; Vattikuti, S.V.P.; Almunyif, A.A.; Sangaraju, S.; Kim, K.H. Characterization of a Synthesized Mg0.7Ni0.3Fe2O4/CeO2/MgFe2O4 Nanocomposite for Magnetic and Electrochemical Applications. Colloids Surf. Physicochem. Eng. Asp. 2025, 722, 137269. [Google Scholar] [CrossRef]
- Tang, J.; Zou, Z.; Ye, J. Photophysical and Photocatalytic Properties of AgInW2O8. J. Phys. Chem. B 2003, 107, 14265–14269. [Google Scholar] [CrossRef]
- Song, M.; Li, M.; Yang, X.; Zhang, K.; Qu, X.; Liu, P.; Wu, Y.; Li, L. Dual Transfer Channels in NFS-Supported Sandwich-like Bi4O5I2/Bi5O7I/g-C3N4 Z-Scheme Heterojunctions Facilitated Efficient Degradation of Diclofenac. J. Environ. Chem. Eng. 2025, 13, 116867. [Google Scholar] [CrossRef]
- Almenia, S.H.; Ismail, A.A.; Alzahrani, K.A.; Aljahdali, M. Li2MnO3 Nanoparticles Decorated with Co3O4 as Functional Visible-Light-Induced Heterojunction Photocatalysts for the Degradation of Tetracycline. J. Alloys Compd. 2023, 953, 170127. [Google Scholar] [CrossRef]
- Shi, H.; He, Y.; Li, Y.; He, T.; Luo, P. Efficient Degradation of Tetracycline in Real Water Systems by Metal-Free g-C3N4 Microsphere through Visible-Light Catalysis and PMS Activation Synergy. Sep. Purif. Technol. 2022, 280, 119864. [Google Scholar] [CrossRef]
- Mai, X.; Lin, W.; Chen, J.; Yang, Q.; Gao, R. Synthesis of Z-Scheme (001)-TiO2/Bi5O7I Heterojunctions with Enhanced Interfacial Charge Separation and Photocatalytic Degradation of Rhodamine B. React. Kinet. Mech. Catal. 2022, 135, 3447–3459. [Google Scholar] [CrossRef]
- Tan, J.; Xu, C.; Zhang, X.; Huang, Y. MOFs-Derived Defect Carbon Encapsulated Magnetic Metallic Co Nanoparticles Capable of Efficiently Activating PMS to Rapidly Degrade Dyes. Sep. Purif. Technol. 2022, 289, 120812. [Google Scholar] [CrossRef]
- Zhou, W.; Hong, C.; Wang, W.; Long, S.; Jing, C.; Lin, Y.; Wu, L. Novel MIL-53(Fe)/SnS2 Z-Scheme Heterojunction as Photoactivator of Peroxymonosulfate for Efficient Degradation of RhB. J. Alloys Compd. 2025, 1027, 180627. [Google Scholar] [CrossRef]
- Chandrapal, R.R.; Bharathi, K.; Bakiyaraj, G.; Bharathkumar, S.; Priyajanani, Y.; Manivannan, S.; Archana, J.; Navaneethan, M. Harnessing ZnCr2O4/g-C3N4 nanosheet heterojunction for enhanced photocatalytic degradation of rhodamine B and ciprofloxacin. Chemosphere 2024, 350, 141094. [Google Scholar] [CrossRef]
- Wei, J.; Liang, Z.; Hao, L.; Yu, Y.; Hou, H.; Chen, C.; Qian, G.; Min, D. Oxygen vacancies and heterojunction synergistically enhancing degradation of rhodamine B by UiO-66-NH2 derived photocatalyst. J. Water Process Eng. 2025, 69, 106830. [Google Scholar] [CrossRef]
- Osanloo, M.; Khorasheh, F.; Larimi, A. Fabrication of nano-dandelion magnetic TiO2/CuFe2O4 doped with silver as a highly visible-light-responsive photocatalyst for degradation of Naproxen and Rhodamine B. J. Mol. Liq. 2024, 407, 125242. [Google Scholar] [CrossRef]
- Xi, H.; Wang, H.; Liu, D.; Mu, Q.; Xu, X.; Kang, Q.; Yang, Y.; Yang, Z.; Lei, Z. Boosting the photocatalytic benzylamine oxidation and rhodamine B degradation using Z-scheme heterojunction of NiFe2O4/rGO/Bi2WO6. J. Alloys Compd. 2025, 1010, 177818. [Google Scholar] [CrossRef]
- Essenni, S.; Khan, M.A.; El Kaim Billah, R.; Jeon, B.H.; Sundaramurthy, S.; Agunaou, M. Template assisted hydrothermal synthesis of bismuth vanadate for Rhodamine B photodegradation. J. Mol. Liq. 2024, 398, 124270. [Google Scholar] [CrossRef]
- Shi, K.; Li, X.; Tian, Z.; Luo, Y.; Ding, R.; Zhu, Y.; Yao, H. Synergistic and efficient photocatalytic degradation of rhodamine B and tetracycline in wastewater based on novel S-scheme heterojunction phosphotungstic Acid@MIL-101(Cr). J. Environ. Manag. 2025, 373, 123716. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Lu, J.; Zhou, L.; Wang, Q.; Wu, F.; Pan, Y.; Zhang, M.; Wu, G. Morphological Regulation of Bi5O7I for Enhanced Efficiency of Rhodamine B Degradation Under Visible-Light. Catalysts 2025, 15, 714. https://doi.org/10.3390/catal15080714
Yang X, Lu J, Zhou L, Wang Q, Wu F, Pan Y, Zhang M, Wu G. Morphological Regulation of Bi5O7I for Enhanced Efficiency of Rhodamine B Degradation Under Visible-Light. Catalysts. 2025; 15(8):714. https://doi.org/10.3390/catal15080714
Chicago/Turabian StyleYang, Xi, Jiahuali Lu, Lei Zhou, Qin Wang, Fan Wu, Yuwei Pan, Ming Zhang, and Guangyu Wu. 2025. "Morphological Regulation of Bi5O7I for Enhanced Efficiency of Rhodamine B Degradation Under Visible-Light" Catalysts 15, no. 8: 714. https://doi.org/10.3390/catal15080714
APA StyleYang, X., Lu, J., Zhou, L., Wang, Q., Wu, F., Pan, Y., Zhang, M., & Wu, G. (2025). Morphological Regulation of Bi5O7I for Enhanced Efficiency of Rhodamine B Degradation Under Visible-Light. Catalysts, 15(8), 714. https://doi.org/10.3390/catal15080714