Energy-Saving-Targeted Solar Photothermal Dehydration and Confined Catalytic Pyrolysis of Oily Sludge Using Wood Sponge Loaded with Carbon Dots
Abstract
1. Introduction
2. Results and Discussion
2.1. Properties of CM-CDs
2.2. Solar Thermal Dehydration of OS
2.3. Confined Catalytic Pyrolysis of OS and CM-CDs
3. Experimental Section
3.1. Preparation of Wood Sponge Loaded with Carbon Dots
3.2. OS Preparation
3.3. Adsorption of Organic Solvent Under Solar Heating Conditions
3.4. Process of Solar Thermal Dehydration
3.5. Process of Confined Catalytic Pyrolysis
3.6. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Lin, F.; Li, K.; Zheng, F.; Yan, B.; Che, L.; Tian, W.; Chen, G.; Yoshikawa, K. A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis. J. Hazard. Mater. 2021, 406, 124706. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Li, J.; Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef]
- Lin, B.; Huang, Q.; Chi, Y. Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality. Fuel Process Technol. 2018, 177, 275–282. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.; Jiang, Z.; Song, Y.; Zhang, T.; Siyal, A.A.; Dai, J.; Bi, X.; Fu, J.; Ao, W. Microwave pyrolysis of oily sludge under different control modes. J. Hazard. Mater. 2021, 416, 125887. [Google Scholar] [CrossRef]
- Negrão, D.R.; Grandis, A.; Buckeridge, M.S.; Rocha, G.J.; Leal, M.R.L.; Driemeier, C. Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review. Renew. Sustain. Energy Rev. 2021, 148, 111268. [Google Scholar] [CrossRef]
- Udayanga, W.C.; Veksha, A.; Giannis, A.; Lisak, G.; Lim, T.-T. Effects of sewage sludge organic and inorganic constituents on the properties of pyrolysis products. Energ. Convers. Manag. 2019, 196, 1410–1419. [Google Scholar] [CrossRef]
- Kawai, H.; Kumata, F. Free radical behavior in thermal cracking reaction using petroleum heavy oil and model compounds. Catal. Today 1998, 43, 281–289. [Google Scholar] [CrossRef]
- Li, Z.; Lei, S.; Xi, J.; Ye, D.; Hu, W.; Song, L.; Hu, Y.; Cai, W.; Gui, Z. Bio-based multifunctional carbon aerogels from sugarcane residue for organic solvents adsorption and solar-thermal-driven oil removal. Chem. Eng. J. 2021, 426, 129580. [Google Scholar] [CrossRef]
- Su, Y.; Chang, Q.; Xue, C.; Yang, J.; Hu, S. Solar-irradiated carbon dots as high-density hot spots in sponge for high-efficiency cleanup of viscous crude oil spill. J. Mater. Chem. A 2022, 10, 585–592. [Google Scholar] [CrossRef]
- Kucora, I.; Paunjoric, P.; Tolmac, J.; Vulovic, M.; Speight, J.G.; Radovanovic, L. Coke formation in pyrolysis furnaces in the petrochemical industry. Pet. Sci. Technol. 2017, 35, 213–221. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Gholizadeh, M.; Hu, X. Different reaction behaviours of light or heavy density polyethylene during the pyrolysis with biochar as the catalyst. J. Hazard. Mater. 2020, 399, 123075. [Google Scholar] [CrossRef]
- Li, B.; Bian, Z.; Wang, Z.; Zhang, F.; Liu, Y.; Zhang, W.; Bao, M.; Li, Y. Advanced Janus Aerogels Evaporator Featuring with Multiscale Architectures and Dual-Layer Design for Efficient Oily Seawater Purification. Adv. Funct. Mater. 2025, 2504591. [Google Scholar] [CrossRef]
- Xiang, L.; Lin, F.; Cai, B.; Wang, K.; Wang, Z.; Yan, B.; Chen, G.; He, C. Evaluation of the Flexibility for Catalytic Ozonation of Dichloromethane over Urchin-Like CuMnO x in Flue Gas with Complicated Components. Environ. Sci. Technol. 2022, 56, 13379–13390. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, F.; Li, Y.; Jiang, H.; Mishra, D.D.; Yu, F.; Chen, Z.; Hu, C.; Chen, Y.; Qu, L. 3D hydrogel evaporator with vertical radiant vessels breaking the trade-off between thermal localization and salt resistance for solar desalination of high-salinity. Adv. Mater. 2022, 34, 2203137. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Shi, Y.; Chen, Z.; Sun, X.; Yuan, H.; Guo, F.; Shi, W. Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen. Chem. Eng. J. 2023, 453, 139834. [Google Scholar] [CrossRef]
- Rahmawati, I.; Indriyati; Permatasari, F.A.; Irham, M.A.; Nugraha, M.I.; Anthopoulos, T.D.; Iskandar, F. Modulating photothermal properties of carbon dots through nitrogen incorporation enables efficient solar water evaporation. ACS Appl. Nano Mater. 2023, 6, 2517–2526. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, J.; Yu, H.; Yu, J. A facile hydrothermal synthesis of carbon dots modified gC 3 N 4 for enhanced photocatalytic H 2-evolution performance. Dalton Trans. 2017, 46, 6417–6424. [Google Scholar] [CrossRef]
- Li, D.; Lei, S.; Lin, F.; Zhong, L.; Ma, W.; Chen, G. Study of scrap tires pyrolysis–Products distribution and mechanism. Energy 2020, 213, 119038. [Google Scholar] [CrossRef]
- Li, J.; Lin, F.; Yu, H.; Tong, X.; Cheng, Z.; Yan, B.; Song, Y.; Chen, G.; Hou, L.A.; Crittenden, J.C. Biochar-assisted catalytic pyrolysis of oily sludge to attain harmless disposal and residue utilization for soil reclamation. Environ. Sci. Technol. 2023, 57, 7063–7073. [Google Scholar] [CrossRef] [PubMed]
- TranVan, L.; Legrand, V.; Jacquemin, F. Thermal decomposition kinetics of balsa wood: Kinetics and degradation mechanisms comparison between dry and moisturized materials. Polym. Degrad. Stab. 2014, 110, 208–215. [Google Scholar] [CrossRef]
- Chen, W.; Fang, Y.; Li, K.; Chen, Z.; Xia, M.; Gong, M.; Chen, Y.; Yang, H.; Tu, X.; Chen, H. Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products. Appl. Energy 2020, 260, 114242. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J. Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts. RSC Adv. 2014, 4, 10731–10737. [Google Scholar] [CrossRef]
- Zhong, D.; Zeng, K.; Li, J.; Qiu, Y.; Flamant, G.; Nzihou, A.; Vladimirovich, V.S.; Yang, H.; Chen, H. Characteristics and evolution of heavy components in bio-oil from the pyrolysis of cellulose, hemicellulose and lignin. Renew. Sustain. Energy Rev. 2022, 157, 111989. [Google Scholar] [CrossRef]
- Li, J.; Zheng, F.; Li, Q.; Farooq, M.Z.; Lin, F.; Yuan, D.; Yan, B.; Song, Y.; Chen, G. Effects of inherent minerals on oily sludge pyrolysis: Kinetics, products, and secondary pollutants. Chem. Eng. J. 2022, 431, 133218. [Google Scholar] [CrossRef]
- Wang, L.; Xie, G.; Mi, X.; Zhang, B.; Du, Y.; Zhu, Q.; Yu, Z. Surface-modified TiO2@ SiO2 nanocomposites for enhanced dispersibility and optical performance to apply in the printing process as a pigment. ACS Omega 2023, 8, 20116–20124. [Google Scholar] [CrossRef]
- Zhao, B.; Liang, X.; Li, T.; Lv, X.; Zhang, S. Impact of fuel aromatic content on soot particle physicochemical properties of marine auxiliary diesel engine. Environ. Sci. Pollut. Res. 2022, 29, 84936–84945. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, P.; Faye, M.C.A.; Zhang, Y. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. Carbon 2018, 130, 730–740. [Google Scholar] [CrossRef]
- Lin, C.; Yan, C.; Zeng, X.; Shan, S.; Zhao, Y.; Duan, L. Simplification of temperature-programmed oxidation method to characterize petroleum cokes. Fuel 2023, 334, 126548. [Google Scholar] [CrossRef]
Blasa WOOD | CM | CM-CDs | |
---|---|---|---|
C1s (%) | |||
C-C | 60.90 | 53.83 | 38.58 |
C-N | 0.00 | 0.00 | 11.24 |
C-O | 31.90 | 35.70 | 38.94 |
C=O | 7.20 | 10.45 | 11.24 |
O1s (%) | |||
C-O | 100.00 | 100.00 | 85.37 |
C=O | 0.00 | 0.00 | 4.63 |
Temperature (°C) | OS+CM-CDs Test 1 | OS+CM-CDs Calculated 1 | CM-CDs 1 |
---|---|---|---|
50 | 10,100% | 10,100% | 100% |
500 | 4474% | 4903% | 0.30% |
Ea (kJ/mol) | R2 | α (%) | (kJ/mol) | ||
---|---|---|---|---|---|
Calculated OS (dry)+CM-CDs | SII (201.82–370.48 °C) | 18.77 | 0.99 | 48.75 | 38.78 |
SIII (370.48–445.90 °C) | 12.63 | 0.95 | 17.23 | ||
SIV (445.90–500.00 °C) | 116.76 | 0.93 | 18.29 | ||
Tested OS (dry)+CM-CDs 1 | SII (201.82–370.48 °C) | 17.63 | 0.99 | 48.63 | 35.61 |
SIII (370.48–445.90 °C) | 14.32 | 0.95 | 17.94 | ||
SIV (445.90–500.00 °C) | 116.08 | 0.96 | 15.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, C.; Mao, H.; Lin, F.; Yao, H. Energy-Saving-Targeted Solar Photothermal Dehydration and Confined Catalytic Pyrolysis of Oily Sludge Using Wood Sponge Loaded with Carbon Dots. Catalysts 2025, 15, 764. https://doi.org/10.3390/catal15080764
Luan C, Mao H, Lin F, Yao H. Energy-Saving-Targeted Solar Photothermal Dehydration and Confined Catalytic Pyrolysis of Oily Sludge Using Wood Sponge Loaded with Carbon Dots. Catalysts. 2025; 15(8):764. https://doi.org/10.3390/catal15080764
Chicago/Turabian StyleLuan, Chujun, Huiyi Mao, Fawei Lin, and Hongyun Yao. 2025. "Energy-Saving-Targeted Solar Photothermal Dehydration and Confined Catalytic Pyrolysis of Oily Sludge Using Wood Sponge Loaded with Carbon Dots" Catalysts 15, no. 8: 764. https://doi.org/10.3390/catal15080764
APA StyleLuan, C., Mao, H., Lin, F., & Yao, H. (2025). Energy-Saving-Targeted Solar Photothermal Dehydration and Confined Catalytic Pyrolysis of Oily Sludge Using Wood Sponge Loaded with Carbon Dots. Catalysts, 15(8), 764. https://doi.org/10.3390/catal15080764