ANCUT1, a Fungal Cutinase MgCl2-Activated by a Non-Essential Activation Mechanism for Poly(ethylene terephthalate) Hydrolysis
Abstract
1. Introduction
2. Results and Discussion
2.1. In Silico Analysis of ANCUT1wt Interaction with a PET Insoluble Oligomer
2.2. Effect of MgCl2 on Activity of ANCUT1wt and the DM
2.3. Effect of Reaction Temperature on Amorphous PET Hydrolysis
2.4. Effect of Substrate Crystallinity and Polymer Structure on Enzymatic PET Hydrolysis
3. Materials and Methods
3.1. Modeling the Ligand–Protein Complex
3.2. Molecular Dynamics Simulations (MDs)
3.3. Semiempirical Quantum Mechanical (SQM) Calculations of Enzyme–Ligand Models
3.4. Plasmid Construction and Mutant Enzymes by Site-Directed Mutagenesis
3.5. Expression and Purification of Enzymes
3.6. Enzyme Kinetics
3.7. Depolymerization of PET Films by ANCUT1wt, DM, and LCCICCG
3.8. Differential Scanning Calorimetry (DSC)
3.9. Scanning Electron Microscopy (SEM)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, P.; Savage, P.E.; Pester, C.W. Neutral Hydrolysis of Post-Consumer Polyethylene Terephthalate Waste in Different Phases. ACS Sustain. Chem. Eng. 2023, 11, 7203–7209. [Google Scholar] [CrossRef]
- Sahu, S.; Kaur, A.; Khatri, M.; Singh, G.; Arya, S.K. A Review on Cutinases Enzyme in Degradation of Microplastics. J. Environ. Manag. 2023, 347, 119193. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Hou, J.; Li, M.; Wei, F.; Liao, Y.; Xi, B. Microplastics in the Bloodstream Can Induce Cerebral Thrombosis by Causing Cell Obstruction and Lead to Neurobehavioral Abnormalities. Sci. Adv. 2025, 11, eadr8243. [Google Scholar] [CrossRef]
- Kushwaha, A.; Goswami, L.; Singhvi, M.; Kim, B.S. Biodegradation of Poly(Ethylene Terephthalate): Mechanistic Insights, Advances, and Future Innovative Strategies. Chem. Eng. J. 2023, 457, 141230. [Google Scholar] [CrossRef]
- Alvarado Chacon, F.; Brouwer, M.T.; Thoden van Velzen, E.U. Effect of Recycled Content and RPET Quality on the Properties of PET Bottles, Part I: Optical and Mechanical Properties. Packag. Technol. Sci. 2020, 33, 347–357. [Google Scholar] [CrossRef]
- Arnal, G.; Anglade, J.; Gavalda, S.; Tournier, V.; Chabot, N.; Bornscheuer, U.T.; Weber, G.; Marty, A. Assessment of Four Engineered PET Degrading Enzymes Considering Large-Scale Industrial Applications. ACS Catal. 2023, 13, 13156–13166. [Google Scholar] [CrossRef]
- Kawai, F.; Iizuka, R.; Kawabata, T. Engineered Polyethylene Terephthalate Hydrolases: Perspectives and Limits. Appl. Microbiol. Biotechnol. 2024, 108, 404. [Google Scholar] [CrossRef]
- Kawai, F.; Furushima, Y.; Mochizuki, N.; Muraki, N.; Yamashita, M.; Iida, A.; Mamoto, R.; Tosha, T.; Iizuka, R.; Kitajima, S. Efficient Depolymerization of Polyethylene Terephthalate (PET) and Polyethylene Furanoate by Engineered PET Hydrolase Cut190. AMB Express 2022, 12, 134. [Google Scholar] [CrossRef]
- Ronkvist, Å.M.; Xie, W.; Lu, W.; Gross, R.A. Cutinase-Catalyzed Hydrolysis of Poly(Ethylene Terephthalate). Macromolecules 2009, 42, 5128–5138. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.-L.; Texier, H.; Gavalda, S.; et al. An Engineered PET Depolymerase to Break down and Recycle Plastic Bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Y.; Sun, J.; Zhu, T.; Pang, H.; Li, C.; Geng, W.C.; Wu, B. Computational Redesign of a Hydrolase for Nearly Complete PET Depolymerization at Industrially Relevant High-Solids Loading. Nat. Commun. 2024, 15, 1–12. [Google Scholar] [CrossRef]
- Then, J.; Wei, R.; Oeser, T.; Gerdts, A.; Schmidt, J.; Barth, M.; Zimmermann, W. A Disulfide Bridge in the Calcium Binding Site of a Polyester Hydrolase Increases Its Thermal Stability and Activity against Polyethylene Terephthalate. FEBS Openbio 2016, 6, 425–432. [Google Scholar] [CrossRef]
- Murphy, N.P.; Dempsey, S.H.; DesVeaux, J.S.; Uekert, T.; Chang, A.C.; Mailaram, S.; Alherech, M.; Alt, H.M.; Ramirez, K.J.; Norton-Baker, B.; et al. Process Innovations to Enable Viable Enzymatic Poly(Ethylene Terephthalate) Recycling. Nat. Chem. Eng. 2025, 2, 309–320. [Google Scholar] [CrossRef]
- Guo, B.; Vanga, S.R.; Lopez-Lorenzo, X.; Saenz-Mendez, P.; Ericsson, S.R.; Fang, Y.; Ye, X.; Schriever, K.; Bäckström, E.; Biundo, A.; et al. Conformational Selection in Biocatalytic Plastic Degradation by PETase. ACS Catal. 2022, 12, 3397–3409. [Google Scholar] [CrossRef]
- Zheng, M.; Zhu, X.; Li, Y.; Zhang, Q.; Dong, W.; Wang, W. Prochiral Selectivity in Enzymatic Polyethylene Terephthalate Depolymerization Revealed by Computational Modeling. ACS ES&T Eng. 2024, 4, 2306–2316. [Google Scholar] [CrossRef]
- Thomsen, T.B.; Schubert, S.; Hunt, C.J.; Borch, K.; Jensen, K.; Brask, J.; Westh, P.; Meyer, A.S. Rate Response of Poly(Ethylene Terephthalate)-Hydrolases to Substrate Crystallinity: Basis for Understanding the Lag Phase. ChemSusChem. 2023, 16, e202300291. [Google Scholar] [CrossRef]
- Badino, S.F.; Bååth, J.A.; Borch, K.; Jensen, K.; Westh, P. Adsorption of Enzymes with Hydrolytic Activity on Polyethylene Terephthalate. Enzyme Microb. Technol. 2022, 152, 109937. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Wu, J.; Jin, S.; Wu, Q.; Deng, L.; Wang, F.; Nie, K. The Enhancement of Waste PET Particles Enzymatic Degradation with a Rotating Packed Bed Reactor. J. Clean. Prod. 2024, 434, 140088. [Google Scholar] [CrossRef]
- Schubert, S.; Schaller, K.; Bååth, J.A.; Hunt, C.; Borch, K.; Jensen, K.; Brask, J.; Westh, P. Reaction Pathways for the Enzymatic Degradation of Poly(Ethylene Terephthalate): What Characterizes an Efficient PET-Hydrolase? ChemBioChem 2022, 24, 202200516. [Google Scholar] [CrossRef]
- Araújo, R.; Silva, C.; O’Neill, A.; Micaelo, N.; Guebitz, G.; Soares, C.M.; Casal, M.; Cavaco-Paulo, A. Tailoring Cutinase Activ-ity towards Polyethylene Terephthalate and Polyamide 6,6 Fibers. J. Biotechnol. 2007, 128, 849–857. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, M.; Seo, H.; Hong, H.; Park, J.; Ki, D.; Kim, K.J. Characterization and Engineering of a Fungal Poly(Ethylene Terephthalate) Hydrolyzing Enzyme from Aspergillus fumigatiaffinis. ACS Catal. 2024, 14, 4108–4116. [Google Scholar] [CrossRef]
- Taxeidis, G.; Nikolaivits, E.; Nikodinovic-Runic, J.; Topakas, E. Mimicking the Enzymatic Plant Cell Wall Hydrolysis Mechanism for the Degradation of Polyethylene Terephthalate. Environ. Pollut. 2024, 356, 124347. [Google Scholar] [CrossRef] [PubMed]
- Brinch-Pedersen, W.; Keller, M.B.; Dorau, R.; Paul, B.; Jensen, K.; Borch, K.; Westh, P. Discovery and Surface Charge Engineering of Fungal Cutinases for Enhanced Activity on Poly(Ethylene Terephthalate). ACS Sustain. Chem. Eng. 2024, 12, 7329–7337. [Google Scholar] [CrossRef]
- Hellesnes, K.N.; Vijayaraj, S.; Fojan, P.; Petersen, E.; Courtade, G. Biochemical Characterization and NMR Study of a PET-Hydrolyzing Cutinase from Fusarium solani pisi. Biochemistry 2023, 62, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- de Castro, A.M.; Carniel, A.; Stahelin, D.; Chinelatto, L.S.; de Angeli Honorato, H.; de Menezes, S.M.C. High-Fold Improvement of Assorted Post-Consumer Poly(Ethylene Terephthalate) (PET) Packages Hydrolysis Using Humicola insolens Cutinase as a Single Biocatalyst. Process Biochem. 2019, 81, 85–91. [Google Scholar] [CrossRef]
- Peña-Montes, C.; Bermúdez-García, E.; Castro-Ochoa, D.; Vega-Pérez, F.; Esqueda-Domínguez, K.; Castro-Rodríguez, J.A.; González-Canto, A.; Segoviano-Reyes, L.; Navarro-Ocaña, A.; Farrés, A. ANCUT1, a Novel Thermoalkaline Cutinase from Aspergillus nidulans and Its Application on Hydroxycinnamic Acids Lipophilization. Biotechnol. Lett. 2024, 46, 409–430. [Google Scholar] [CrossRef]
- Bermúdez-García, E.; Peña-Montes, C.; Martins, I.; Pais, J.; Pereira, C.S.; Sánchez, S.; Farrés, A. Regulation of the Cutinases Expressed by Aspergillus nidulans and Evaluation of Their Role in Cutin Degradation. Appl. Microbiol. Biotechnol. 2019, 103, 3863–3874. [Google Scholar] [CrossRef]
- Tanaka, T.; Nakayama, M.; Takahashi, T.; Nanatani, K.; Yamagata, Y.; Abe, K. Analysis of the Ionic Interaction between the Hydrophobin RodA and Two Cutinases of Aspergillus nidulans Obtained via an Aspergillus oryzae Expression System. Appl. Microbiol. Biotechnol. 2017, 101, 2343–2356. [Google Scholar] [CrossRef]
- Alvarado, E.; Castro, R.; Castro-Rodríguez, A.; Navarro, A.; Farrés, A. Poly(Lactic Acid) Degradation by Recombinant Cutinases from Aspergillus nidulans. Polymer. 2024, 16, 1994. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; El Omari, K.; et al. Characterization and Engineering of a Plastic-Degrading Aromatic Polyesterase. Proc. Natl. Acad. Sci. USA 2018, 115, E4350–E4357. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gosser, Y.; Baker, P.J.; Ravee, Y.; Ziying, L.; Alemu, G.; Huiguang, L.; Butterfoss, G.L.; Kong, X.P.; Gross, R.; et al. Structural and Functional Studies of Aspergillus oryzae Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation. J. Am. Chem. Soc. 2009, 131, 15711–15716. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.; De Geus, P.; Lauwereys, M.; Matthyssens, G.; Cambillau, C. Fusarium solani Cutinase Is a Lipolytic Enzyme with a Catalytic Serine Accessible to Solvent. Nature 1992, 356, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Stewart, J.J.P. MOPAC2016; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016. [Google Scholar]
- Pecina, A.; Haldar, S.; Fanfrlík, J.; Meier, R.; Řezáč, J.; Lepšík, M.; Hobza, P. SQM/COSMO Scoring Function at the DFTB3-D3H4 Level: Unique Identification of Native Protein-Ligand Poses. J. Chem. Inf. Model. 2017, 57, 127–132. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Then, J.; Wei, R.; Oeser, T.; Barth, M.; Belisário-Ferrari, M.R.; Schmidt, J.; Zimmermann, W. Ca2+ and Mg2+ Binding Site Engineering Increases the Degradation of Polyethylene Terephthalate Films by Polyester Hydrolases from Thermobifida fusca. Biotechnol. J. 2015, 10, 592–598. [Google Scholar] [CrossRef]
- Oda, M.; Yamagami, Y.; Inaba, S.; Oida, T.; Yamamoto, M.; Kitajima, S.; Kawai, F. Enzymatic Hydrolysis of PET: Functional Roles of Three Ca2+ Ions Bound to a Cutinase-like Enzyme, Cut190*, and Its Engineering for Improved Activity. Appl. Microbiol. Biotechnol. 2018, 102, 10067–10077. [Google Scholar] [CrossRef]
- Thomsen, T.B.; Hunt, C.J.; Meyer, A.S. Influence of Substrate Crystallinity and Glass Transition Temperature on Enzymatic Degradation of Polyethylene Terephthalate (PET). N. Biotechnol. 2022, 69, 28–35. [Google Scholar] [CrossRef]
- Gonzalez-Andrade, M.; Rodriguez-Sotres, R.; Madariaga-Mazon, A.; Rivera-Chavez, J.; Mata, R.; Sosa-Peinado, A.; Del Pozo-Yauner, L.; Arias-Olguin, I.I. Insights into Molecular Interactions between CaM and Its Inhibitors from Molecular Dynamics Simulations and Experimental Data. J. Biomol. Struct. Dyn. 2016, 34, 78–91. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Aristizábal-Lanza, L.; Mankar, S.V.; Tullberg, C.; Zhang, B.; Linares-Pastén, J.A. Comparison of the Enzymatic Depolymerization of Polyethylene Terephthalate and AkestraTM Using Humicola insolens Cutinase. Front. Chem. Eng. 2022, 4, 1048744. [Google Scholar] [CrossRef]
- Shirke, A.N.; Butterfoss, G.L.; Saikia, R.; Basu, A.; de Maria, L.; Svendsen, A.; Gross, R.A. Engineered Humicola insolens Cutinase for Efficient Cellulose Acetate Deacetylation. Biotechnol. J. 2017, 12, 1–11. [Google Scholar] [CrossRef]
- Suzuki, K.; Noguchi, M.T.; Shinozaki, Y.; Koitabashi, M.; Sameshima-Yamashita, Y.; Yoshida, S.; Fujii, T.; Kitamoto, H.K. Purification, Characterization, and Cloning of the Gene for a Biodegradable Plastic-Degrading Enzyme from Paraphoma-Related Fungal Strain B47–9. Appl. Microbiol. Biotechnol. 2014, 98, 4457–4465. [Google Scholar] [CrossRef] [PubMed]
- Hilser, V.J.; Anderson, J.A.; Motlagh, H.N. Allostery vs. “Allokairy”. Proc. Natl. Acad. Sci. USA 2015, 112, 11430–11431. [Google Scholar] [CrossRef] [PubMed]
- Bååth, J.A.; Borch, K.; Jensen, K.; Brask, J.; Westh, P. Comparative Biochemistry of Four Polyester (PET) Hydrolases. ChemBioChem 2021, 22, 1627–1637. [Google Scholar] [CrossRef]
- Egmond, M.R.; De Vlieg, J. Fusarium solani pisi Cutinase. Biochimie 2000, 82, 1015–1021. [Google Scholar] [CrossRef]
- Su, L.; Hong, R.; Kong, D.; Wu, J. Enhanced Activity towards Polyacrylates and Poly(Vinyl Acetate) by Site-Directed Muta-genesis of Humicola insolens Cutinase. Int. J. Biol. Macromol. 2020, 162, 1752–1759. [Google Scholar] [CrossRef]
- Duan, X.; Liu, Y.; You, X.; Jiang, Z.; Yang, S.; Yang, S. High-Level Expression and Characterization of a Novel Cutinase from Malbranchea cinnamomea Suitable for Butyl Butyrate Production. Biotechnol. Biofuels. 2017, 10, 223. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS Biomolecular Solvation Software Suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef]
- Kipnusu, W.K.; Zhuravlev, E.; Schick, C.; Kremer, F.; Kipnusu, W.K.; Kremer, F.; Zhuravlev, E.; Schick, C. The Initial Molecular Interactions in the Course of Enthalpy Relaxation and Nucleation in Polyethylene Terephthalate (PET) as Monitored by Combined Nanocalorimetry and FTIR Spectroscopy. Macromol. Chem. Phys. 2023, 224, 2200443. [Google Scholar] [CrossRef]
- Erickson, E.; Gado, J.E.; Avilán, L.; Bratti, F.; Brizendine, R.K.; Cox, P.A.; Gill, R.; Graham, R.; Kim, D.-J.; König, G.; et al. Sourcing Thermotolerant Poly(Ethylene Terephthalate) Hydrolase Scaffolds from Natural Diversity. Nat. Commun. 2022, 13, 7850. [Google Scholar] [CrossRef] [PubMed]
- Oda, K.; Wlodawer, A. Development of Enzyme-Based Approaches for Recycling PET on an Industrial Scale. Biochem 2024, 63, 369–401. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat Methods. 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory. Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Gracia, L. Clustering. 2004. Available online: https://github.com/luisico/clustering (accessed on 13 April 2020).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Janert, P.K. Gnuplot in Action: Understanding Data with Graphs, 2nd ed.; Manning Publications Co.: Shelter Island, NY, USA, 2016; Available online: https://ieeexplore.ieee.org/book/10280645 (accessed on 10 February 2025)ISBN 9781633430181.
- Benkert, P.; Biasini, M.; Schwede, T. Toward the Estimation of the Absolute Quality of Individual Protein Structure Models. Bioinformatics 2011, 27, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. IUCr PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. J. Appl. Cryst. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- David, L.; Cheah, E.; Cygler, M.; Dijkstra, B.; Frolow, F.; Sybille, M.; Harel, M.; James Remington, S.; Silman, I.; Schrag, J.; et al. The α/β Hydrolase Fold. PEDS 1992, 5, 197–211. [Google Scholar] [CrossRef]
- Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of Protein Models with Three-Dimensional Profiles. Methods Enzymol. 1997, 277, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Colovos, C.; Yeates, T.O. Verification of Protein Structures: Patterns of Nonbonded Atomic Interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Wiederstein, M.; Sippl, M.J. ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of Proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Castilla, L.P.; Rodríguez-Sotres, R. A Score of the Ability of a Three-Dimensional Protein Model to Retrieve Its Own Sequence as a Quantitative Measure of Its Quality and Appropriateness. PLoS ONE 2010, 5, 1–19. [Google Scholar] [CrossRef]
- Novy, V.; Carneiro, L.V.; Shin, J.H.; Larsbrink, J.; Olsson, L. Phylogenetic Analysis and In-Depth Characterization of Functionally and Structurally Diverse CE5 Cutinases. J. Biol. Chem. 2021, 297, 101302. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and Sequence Analysis Tools Services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Dimarogona, M.; Nikolaivits, E.; Kanelli, M.; Christakopoulos, P.; Sandgren, M.; Topakas, E. Structural and Functional Studies of a Fusarium oxysporum Cutinase with Polyethylene Terephthalate Modification Potential. Biochim. Biophys. Acta Gen. Subj. 2015, 1850, 2308–2317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Rodríguez, J.A.; Ramírez-González, K.F.; Franco-Guerrero, F.; Sabido-Ramos, A.; Abundio-Sánchez, I.F.; Rodríguez-Sotres, R.; Rodríguez-Romero, A.; Farrés, A. ANCUT1, a Fungal Cutinase MgCl2-Activated by a Non-Essential Activation Mechanism for Poly(ethylene terephthalate) Hydrolysis. Catalysts 2025, 15, 757. https://doi.org/10.3390/catal15080757
Castro-Rodríguez JA, Ramírez-González KF, Franco-Guerrero F, Sabido-Ramos A, Abundio-Sánchez IF, Rodríguez-Sotres R, Rodríguez-Romero A, Farrés A. ANCUT1, a Fungal Cutinase MgCl2-Activated by a Non-Essential Activation Mechanism for Poly(ethylene terephthalate) Hydrolysis. Catalysts. 2025; 15(8):757. https://doi.org/10.3390/catal15080757
Chicago/Turabian StyleCastro-Rodríguez, José Augusto, Karla Fernanda Ramírez-González, Francisco Franco-Guerrero, Andrea Sabido-Ramos, Ilce Fernanda Abundio-Sánchez, Rogelio Rodríguez-Sotres, Adela Rodríguez-Romero, and Amelia Farrés. 2025. "ANCUT1, a Fungal Cutinase MgCl2-Activated by a Non-Essential Activation Mechanism for Poly(ethylene terephthalate) Hydrolysis" Catalysts 15, no. 8: 757. https://doi.org/10.3390/catal15080757
APA StyleCastro-Rodríguez, J. A., Ramírez-González, K. F., Franco-Guerrero, F., Sabido-Ramos, A., Abundio-Sánchez, I. F., Rodríguez-Sotres, R., Rodríguez-Romero, A., & Farrés, A. (2025). ANCUT1, a Fungal Cutinase MgCl2-Activated by a Non-Essential Activation Mechanism for Poly(ethylene terephthalate) Hydrolysis. Catalysts, 15(8), 757. https://doi.org/10.3390/catal15080757