Advanced Energy Solutions to Enhance Building Energy Efficiency and Flexibility

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Energy, Physics, Environment, and Systems".

Deadline for manuscript submissions: 15 January 2026 | Viewed by 820

Special Issue Editors

Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, QC, Canada
Interests: energy efficiency; energy flexibility; advanced control; building performance simulation; building–grid interactions

E-Mail Website
Guest Editor
Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, QC, Canada
Interests: fault detection and diagnostics; energy efficiency; machine learning; heat transfer; HVAC

Special Issue Information

Dear Colleagues,

The buildings sector is one of the largest contributors to global energy consumption and greenhouse gas emissions, making it both a pressing challenge and a powerful lever for achieving sustainable development goals. As the demand for decarbonization, energy cost reduction, and occupant comfort grows, the integration of advanced energy solutions (e.g., renewable energy, energy storage, advanced controls, demand flexibility strategies, etc.) has emerged as a critical pathway for enhancing building energy efficiency and flexibility and reducing building’s carbon footprint.

In this context, we are pleased to invite you to share your latest research in this evolving field by contributing to our Special Issue. This collection seeks to showcase cutting-edge scientific and technological developments that improve the energy performance and adaptability of buildings.

We invite original research articles, comprehensive reviews, and case studies that address innovative system design, energy management, smart controls, energy storage integration, and grid-interactive efficient buildings (GEBs). Research areas may include, but are not limited to, the following:

  • Development and integration of renewable energy in buildings.
  • Smart HVAC systems and adaptive control strategies.
  • Hourly GHG emissions and decarbonization measures.
  • Building-to-grid (B2G) and demand-side management approaches.
  • Energy storage for improving demand flexibility.
  • Digital twins, AI, and machine learning applications in the built environment.
  • Case studies demonstrating real-world implementations and performance of innovation solutions.

For any inquiries about the appropriateness of contribution topics, you are very welcome to contact us. We look forward to receiving your contributions.

Dr. Kun Zhang
Dr. Hongwen Dou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • energy efficiency
  • energy flexibility
  • HVAC
  • energy storage
  • renewable energy
  • grid-interactive building
  • advanced control
  • artificial intelligence
  • machine learning
  • digital twins

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 8104 KiB  
Article
Energy Consumption Analysis of Using Mashrabiya as a Retrofit Solution for a Residential Apartment in Al Ain Square, Al Ain, UAE
by Lindita Bande, Anwar Ahmad, Saada Al Mansoori, Waleed Ahmed, Amna Shibeika, Shama Anbrine and Abdul Rauf
Buildings 2025, 15(14), 2532; https://doi.org/10.3390/buildings15142532 - 18 Jul 2025
Viewed by 282
Abstract
The city of Al Ain is a fast-developing area. With building typology varying from low-rise to mid-rise, sustainable design in buildings is needed. As the majority of the city’s population is Emirati Citizens, the percentage of expats is increasing. The expats tend to [...] Read more.
The city of Al Ain is a fast-developing area. With building typology varying from low-rise to mid-rise, sustainable design in buildings is needed. As the majority of the city’s population is Emirati Citizens, the percentage of expats is increasing. The expats tend to live in mid-rise buildings. One of the central midrise areas is AL Ain Square. This study aims to investigate how an optimized mashrabiya pattern can impact the energy and the Predicted Mean Vote (PMV) in a 3-bedroom apartment, fully oriented to the south, of an expat family. The methodology is as follows: case study selection, Weather analysis, Modeling/Validation of the base case scenario, Optimization of the mashrabiya pattern, Simulation of various scenarios, and Results. Analyzing the selected case study is the initial step of the methodology. This analysis begins with the district, building typology, and the chosen apartment. The weather analysis is relevant for using the mashrabiya (screen device) and the need to improve energy consumption and thermal comfort. The modeling of the base case shall be performed in Rhino Grasshopper. The validation is based on a one-year electricity bill provided by the owner. The optimization of mashrabiya patterns is an innovative process, where various designs are compared and then optimized to select the most efficient pattern. The solutions to the selected scenarios will then yield the results of the optimal scenario. This study is relevant to industry, academia, and local authorities as an innovative approach to retrofitting buildings. Additionally, the research presents a creative vision that suggests optimized mashrabiya patterns can significantly enhance energy savings, with the hexagonal grid configuration demonstrating the highest efficiency. This finding highlights the potential for geometry-driven shading optimization tailored to specific climatic and building conditions. Contrasting earlier mashrabiya studies that assess one static pattern, we couple a geometry-agnostic evolutionary solver with a utility-calibrated EnergyPlus model to test thousands of square, hexagonal, and triangular permutations. This workflow uncovers a previously undocumented non-linear depth perforation interaction. It validates a hexagonal screen that reduces annual cooling energy by 12.3%, establishing a replicable, grid-specific retrofit method for hot-arid apartments. Full article
Show Figures

Figure 1

29 pages, 2431 KiB  
Article
Expectations Versus Reality: Economic Performance of a Building-Integrated Photovoltaic System in the Andean Ecuadorian Context
by Esteban Zalamea-León, Danny Ochoa-Correa, Hernan Sánchez-Castillo, Mateo Astudillo-Flores, Edgar A. Barragán-Escandón and Alfredo Ordoñez-Castro
Buildings 2025, 15(14), 2493; https://doi.org/10.3390/buildings15142493 - 16 Jul 2025
Viewed by 391
Abstract
This article presents an empirical evaluation of the technical and economic performance of a building-integrated photovoltaic (PV) system implemented at the Faculty of Architecture and Urbanism of the University of Cuenca, Ecuador. This study explores both stages of deployment, beginning with a 7.7 [...] Read more.
This article presents an empirical evaluation of the technical and economic performance of a building-integrated photovoltaic (PV) system implemented at the Faculty of Architecture and Urbanism of the University of Cuenca, Ecuador. This study explores both stages of deployment, beginning with a 7.7 kWp pilot system and later scaling to a full 75.6 kWp configuration. This hourly monitoring of power exchanges with utility was conducted over several months using high-resolution instrumentation and cloud-based analytics platforms. A detailed comparison between projected energy output, recorded production, and real energy consumption was carried out, revealing how seasonal variability, cloud cover, and academic schedules influence system behavior. The findings also include a comparison between billed and actual electricity prices, as well as an analysis of the system’s payback period under different cost scenarios, including state-subsidized and real-cost frameworks. The results confirm that energy exports are frequent during weekends and that daily generation often exceeds on-site demand on non-working days. Although the university benefits from low electricity tariffs, the system demonstrates financial feasibility when broader public cost structures are considered. This study highlights operational outcomes under real-use conditions and provides insights for scaling distributed generation in institutional settings, with particular relevance for Andean urban contexts with similar solar profiles and tariff structures. Full article
Show Figures

Figure 1

Back to TopTop