Carbon-Neutral Infrastructure

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Energy, Physics, Environment, and Systems".

Deadline for manuscript submissions: closed (31 July 2024) | Viewed by 9932

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Transportation, Shandong University of Science and Technology, Qingdao 266590, China
Interests: green energy conversion pavement technology; solid recycling materials used in asphalt pavement; sustainability of road infrastructures; technical testing to address performance properties; composition of asphalt mixtures considering various additives and re-using reclaimed asphalt
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
School of Highway, Chang’an University, Middle-Section of Nan'er Huan Road, Xi'an 710064, China
Interests: road materials; smart highway
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Civil Engineering, Aalto University, 02150 Espoo, Finland
Interests: microstructure and numerical modeling in pavement; mechanical property analysis and measurements; advanced materials and structures; failure analysis; fracture mechanics
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Interests: performance characterization of rubber asphalt using molecular dynamics simulation; tire-pavement contact and its friction mechanism; adhesion and debonding behaviors between asphalt binder and aggregate; sustainable materials used in asphalt pavement
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Currently, achieving carbon neutrality is a common goal worldwide. Transportation infrastructure is characterized by high resource demand and energy consumption. Road infrastructure requires a large amount of non-renewable resources during the construction phase, and asphalt and cement pavements, as the most important components of road transportation infrastructure, generate high levels of carbon emissions during their construction and maintenance phases. Therefore, reducing the dependence of road infrastructure on non-renewable resources, upgrading the level of construction and maintenance, increasing the level of recycling of infrastructure materials, and developing low-carbon materials or related technologies are very important for the sustainable development of transportation and the goal of carbon neutrality. Based on the principle of conserving non-renewable resources and energy, some attempts have been made to construct low-carbon emission transportation infrastructure, such as using typical solid waste to replace natural resources in concrete, developing warm-mix asphalt and cold-mix asphalt technologies for asphalt pavements, and improving the recycling efficiency of infrastructure by optimizing processes and equipment. To help achieve the goal of carbon neutrality in transportation infrastructure, this topic aims to attract articles on new materials or innovative technologies for carbon neutral transportation infrastructure. We welcome original research or review articles with a clear application focus in these areas.

Dr. Wentong Wang
Dr. Dongdong Yuan
Dr. Augusto Cannone Falchetto
Dr. Fucheng Guo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • carbon-neutralized cement or asphalt-based materials
  • material technologies to improve the utilization of infrastructure waste resources
  • alternative materials for carbon neutral infrastructure
  • recycled materials in infrastructure
  • cold mix asphalt materials
  • green and sustainable infrastructure materials
  • energy harvesting and green conversion technologies for road infrastructure
  • smart infrastructure materials and structures

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3531 KiB  
Article
Study on Strength Prediction and Material Scheme Optimization for Modified Red Mud Based on Artificial Neural Networks
by Qiaoling Ji, Xiuru Jia, Yingjian Wang and Yu Cheng
Buildings 2024, 14(11), 3544; https://doi.org/10.3390/buildings14113544 - 6 Nov 2024
Viewed by 469
Abstract
Focusing on the complex nonlinear problems of strength prediction and the material scheme design of modified red mud for use as a road material in engineering applications, a strength prediction neural network is established and utilized to optimize the material scheme, including the [...] Read more.
Focusing on the complex nonlinear problems of strength prediction and the material scheme design of modified red mud for use as a road material in engineering applications, a strength prediction neural network is established and utilized to optimize the material scheme, including the compound-solidifying agent ratio, water content, and curing age, based on experimental data accumulated during years of engineering practice and an artificial neural network. In this study, a backpropagation (BP) neural network is adopted, and 114 sets of experimental data are used to train the parameters of the unconfined compressive strength prediction model. Then, using the BP strength prediction model, the material scheme optimization process is carried out, with the strength and material costs as the objectives. The results show that the BP neural network model has a high prediction accuracy, the relative prediction error is basically within 10%, the root-mean-squared error is less than 0.04, and the correlation coefficient is more than 0.99. According to the strength requirements of modified red mud in different road projects and the constraints of each property, an optimal material scheme with a lower cost and higher 7 d target strength is obtained using a mix of polymer agent–fly-ash–cement–speed-cement in a ratio of 0.02%:1.96%:4.78%:0%, with a 33.93% water content of raw red mud, so that the target strength and material cost are 2.987 MPa and 17.099 CNY/T. This study creates an optimal material scheme, incorporating the compound-solidifying agent ratio, curing age, and water content of the modified red mud road material according to the strength requirements of different projects, thereby promoting the popularization of the utilization of red mud with better engineering practicability and economy. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

22 pages, 16310 KiB  
Article
Experimental Study on Mechanical Properties and Stability of Marine Dredged Mud with Improvement by Waste Steel Slag
by Qiaoling Ji, Yingjian Wang, Xiuru Jia and Yu Cheng
Buildings 2024, 14(11), 3472; https://doi.org/10.3390/buildings14113472 - 30 Oct 2024
Viewed by 412
Abstract
As marine-dredged mud and waste steel slag in coastal port cities continue to soar, the traditional treatment method of land stockpiling has caused ecological problems. Thus, it is necessary to find a large-scale resource-comprehensive utilization method for dredged mud and waste steel slag. [...] Read more.
As marine-dredged mud and waste steel slag in coastal port cities continue to soar, the traditional treatment method of land stockpiling has caused ecological problems. Thus, it is necessary to find a large-scale resource-comprehensive utilization method for dredged mud and waste steel slag. This study uses waste steel slag and composite solidifying agents (cement, lime, fly ash) to physically and chemically improve marine-dredged mud. The physical improvement effect of the particle size and dosage of waste steel slag was studied by the shear strength test under the effect of freeze–thaw cycle. Then, based on the Box–Behnken design of the response surface method, the interaction effects of the solidifying agent components on the unconfined compressive strength were studied. Then, the water stability under dry–wet cycles and a microscopic mechanism were analyzed by XRD and SEM tests. The results show that the waste steel slag with a dosage of 30% and a particle size of 1.18~2.36 mm has the best improvement. The interaction between cement and lime and lime and fly ash has a significant effect on the linear effect and surface effect of 7d unconfined compressive strength, and the strength increases first and then decreases with the increase in its dosage. For the 14d unconfined compressive strength, only the interaction between cement and lime is still significant. The unconfined compressive strength prediction model is established to optimize the mix ratio of the composite solidifying agent. In the water stability, the water stability coefficients of the 7d and 14d tests are 0.68 and 0.95, respectively, and the volume and mass loss rates are all below 1.5%, showing a good performance in dry–wet resistance and durability. Microscopic mechanism analysis shows that waste steel slag provides an ‘anchoring surface’ as a skeleton, which improves the pore structure of dredged mud, and the hydration products generated by the solidifying agent play a role in filling and cementation. The results of the study can provide an experimental and technical basis for the resource engineering of marine-dredged mud and waste steel slag, helping the construction of green low-carbon and resource-saving ports. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

14 pages, 2655 KiB  
Article
Study on Mechanical Properties of Road Cement-Stabilized Macadam Base Material Prepared with Construction Waste Recycled Aggregate
by Yingjie Yuan, Xianhu Hu, Kai Wang, Zhi Liu, Mingchen Zhong and Kun Meng
Buildings 2024, 14(9), 2605; https://doi.org/10.3390/buildings14092605 - 23 Aug 2024
Viewed by 643
Abstract
At present, construction waste recycled aggregates only partially replace natural aggregates to prepare road-based materials. This study addressed this limitation and experimentally investigated the mechanical properties of cement-stabilized macadam base materials utilizing a construction waste recycled aggregate. The feasibility of using these raw [...] Read more.
At present, construction waste recycled aggregates only partially replace natural aggregates to prepare road-based materials. This study addressed this limitation and experimentally investigated the mechanical properties of cement-stabilized macadam base materials utilizing a construction waste recycled aggregate. The feasibility of using these raw materials to prepare cement-stabilized macadam bases was established via experimental validation. Subsequently, compaction tests were conducted to ascertain the maximum dry density and optimum moisture content in the mixture. The mechanical characteristics were further examined using unconfined compressive strength tests, analyzing and discussing the influences of varying cement dosages and curing periods on the material strength. The results indicate that the properties of the recycled aggregates satisfied specification requirements, demonstrating satisfactory mechanical properties. The unconfined compressive strength with a 7-day curing period and a 5% cement content fulfilled the technical standards for expressway-grade heavy and extremely heavy traffic, while that with a 6% cement content (with an added curing agent) met these requirements after just 1 day. Additionally, the curing agent enhanced the early strength of the recycled aggregate base material. This study has broken through the technical bottleneck of low content of recycled aggregate, achieved 100% replacement of natural aggregate, and promoted the sustainable development of the industry. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

28 pages, 22131 KiB  
Article
Study on the Repair Effect of Self-Healing Cementitious Material with Urea-Formaldehyde Resin/Epoxy Resin Microcapsule
by Hanqing Mao, Xuemei Cao, Minru Guo, Chaozhe Jiang and De Chen
Buildings 2024, 14(7), 2201; https://doi.org/10.3390/buildings14072201 - 17 Jul 2024
Viewed by 706
Abstract
Recent studies on microencapsulated self-healing cementitious materials have primarily focused on the particle size and preparation methods of the microcapsules. However, there has been limited attention paid to the microscopic aspects, such as the selection of curing agents and the curing duration of [...] Read more.
Recent studies on microencapsulated self-healing cementitious materials have primarily focused on the particle size and preparation methods of the microcapsules. However, there has been limited attention paid to the microscopic aspects, such as the selection of curing agents and the curing duration of these materials. In this study, urea-formaldehyde resin/epoxy resin E-51 microcapsules were synthesized through in situ polymerization. This research investigates the feasibility of self-healing from a molecular mechanism perspective and evaluates the repair performance of microencapsulated self-healing cement mortar with varying microcapsule concentrations, curing agent types, and curing ages. The findings demonstrate that the microcapsule shells bond effectively with the cementitious matrix, with radial distribution function peaks all located within 3.5 Å. The incorporation of microcapsules enhanced the tensile strength of the modified cement mortar by 116.83% and increased the failure strain by 110%, indicating improved adhesion and mechanical properties. The restorative agent released from the microcapsule core provided greater strength after curing compared to the uncured state. Although the overall strength of the microencapsulated self-healing cement mortar decreased with higher microcapsule concentrations, the repair efficiency improved. The strength recovery rate of 28-day aged modified cement mortar had a significant improvement with the addition of X and Y curing agents, respectively. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

19 pages, 5484 KiB  
Article
Analysis and Comparison of Three Bending Tests on Phosphogypsum-Based Material According to Peridynamic Theory
by Haoyu Ma, Kai Zhang, Sheng Liang, Jiatian Dong, Xiangyang Fan and Xuemei Zhang
Buildings 2024, 14(7), 2181; https://doi.org/10.3390/buildings14072181 - 15 Jul 2024
Cited by 1 | Viewed by 855
Abstract
Phosphogypsum-based materials have gained much attention in the field of road infrastructure from the economic and sustainable perspectives. The Three-point bending test, the Four-point bending test and the Semi-circular bending test are three typical test methods applied for fracture energy measurement. However, the [...] Read more.
Phosphogypsum-based materials have gained much attention in the field of road infrastructure from the economic and sustainable perspectives. The Three-point bending test, the Four-point bending test and the Semi-circular bending test are three typical test methods applied for fracture energy measurement. However, the optimal test method for fracture energy evaluation has not been determined for phosphogypsum-based materials. To contribute to the gap, this study aims to analyze and compare the three test methods for fracture energy evaluation of phosphogypsum materials based on the peridynamic theory. For this purpose, the load–displacement, vertical displacement–Crack Mouth Opening Displacement (CMOD) and fracture energy of the phosphogypsum-based materials were measured and calculated from the three test methods. The simulated load–displacement and vertical displacement–CMOD by PD numerical models, with different fracture energy as inputs, were compared to the corresponding tested values according to simulation error results. The results showed that the Four-point bending test led to minimized errors lower than 0.189 and indicators lower than 0.124, demonstrating the most optimal test method for the fracture energy measurement of phosphogypsum-based material. The results of this study can provide new methodological references for the selection of material fracture energy measurement tests. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

21 pages, 14216 KiB  
Article
Gypsum-Enhanced Red Mud Composites: A Study on Strength, Durability, and Leaching Characteristics
by Shiying Yan, Yu Cheng, Wentong Wang, Lu Jin and Ziyi Ding
Buildings 2024, 14(7), 1979; https://doi.org/10.3390/buildings14071979 - 1 Jul 2024
Cited by 2 | Viewed by 1078
Abstract
The strong alkalinity of red mud and the heavy metals it contains pose a serious threat to the environment. This study investigated the possibility of applying red mud as a solid waste material in road construction to mitigate the problem of red mud [...] Read more.
The strong alkalinity of red mud and the heavy metals it contains pose a serious threat to the environment. This study investigated the possibility of applying red mud as a solid waste material in road construction to mitigate the problem of red mud accumulation. Red mud was modified using titanium gypsum and phosphogypsum as curing agents. The effects of varying gypsum types and mixing ratios on the mechanical properties and heavy metal leaching of the resulting red mud-based materials were assessed using percussion tests, unconfined compressive strength measurements, scanning electron microscopy (SEM), and continuous heavy metal leaching tests. The results showed that the optimal moisture content for titanium gypsum–cement-stabilized red mud (RTC) exceeds that of phosphogypsum–cement-stabilized red mud (RPC), with RTC exhibiting a lower maximum dry density compared to RPC. When the gypsum admixture was within 10%, the strength of the RPC was higher than that of the RTC at the same and curing time. The reticulation in RPC-10 was denser. The cumulative heavy metal releases from both RTC and RPC were within the permissible limits for Class III groundwater discharge standards. Based on the comprehensive test results, RPC is identified as the superior modified red mud material, with an optimal mix ratio of red mud/phosphogypsum/cement of 87:5:8. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

17 pages, 4965 KiB  
Article
Investigation into the Characteristics of Expansion and Compression Deformation of Interbedded Weak Expansive Rocks in Water Immersion
by Yaning Wang, Yuchen Li, Haoyu Qin, Yangui Zhu, Yibo Yao, Jin Jin, Tao Zheng, Qingting Qian and De Chen
Buildings 2024, 14(7), 1901; https://doi.org/10.3390/buildings14071901 - 21 Jun 2024
Viewed by 718
Abstract
In order to investigate the deformation characteristics of interbedded weak expansive rocks in water immersion, the sandstone–mudstone interbedded structures were taken as the object of this study. A total of 27 sets of indoor immersion tests were designed with three influencing factors, namely, [...] Read more.
In order to investigate the deformation characteristics of interbedded weak expansive rocks in water immersion, the sandstone–mudstone interbedded structures were taken as the object of this study. A total of 27 sets of indoor immersion tests were designed with three influencing factors, namely, the layer thickness ratios of sandstone and mudstone (1:1, 2:1, 3:1), the occurrence of the rock layers (flat, oblique, and vertical), and the overburden loadings (0 kPa, 12.5 kPa, and 25 kPa). Tests were conducted to obtain the deformation time series data of the samples during the immersion loading process. Based on this, the influence pattern of each influencing factor on the sample deformation was analyzed individually. The results show that with the increase in overburden loading and rock inclination angle, the sample develops from expansion deformation to compression deformation. Changes in the layer thickness ratio will not change the deformation trend of the sample, and the decrease in the relative mudstone content will only reduce the absolute value of the sample’s expansion and compression deformation. The deformation stability rate of the sample under load is 5~7 times that under no load. The increase in layer thickness ratio and rock inclination angle will lead to different degrees of attenuation of sample expansion force in the range of 8.91~38.68% and 51.00~58.83%, respectively. The research results of this paper can provide a meaningful reference for the design and maintenance of a high-speed railway subgrade in a weak expansive rock area with an interbedded structure. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

14 pages, 4053 KiB  
Article
Interface Interaction of Waste Rubber–Asphalt System
by Jinfei Su, Peilong Li, Guangxin Zhu, Xiaoxu Wang and Shihao Dong
Buildings 2024, 14(6), 1868; https://doi.org/10.3390/buildings14061868 - 20 Jun 2024
Cited by 1 | Viewed by 740
Abstract
Asphalt pavement construction is a large-volume project, with the ability to recycle the industrial waste and reduce carbon emissions. Rubber-modified asphalt is a carbon-neutralized asphalt-based material, facilitating the recycling of waste rubber materials and improving the road performance of the asphalt mixture. To [...] Read more.
Asphalt pavement construction is a large-volume project, with the ability to recycle the industrial waste and reduce carbon emissions. Rubber-modified asphalt is a carbon-neutralized asphalt-based material, facilitating the recycling of waste rubber materials and improving the road performance of the asphalt mixture. To evaluate the interface interaction of the rubber–asphalt system and its effect on the viscosity characteristics of rubber-modified asphalt, the contact properties of rubber particles in asphalt were analyzed on a microscopic level. Rubber swelling tests and solvent elution tests were conducted on the rubber–asphalt system under different preparation conditions. The swelling ratio, degradation ratio, and swelling–degradation ratio were proposed to evaluate the interface interaction. The results show that the interface interaction of the rubber–asphalt system can be divided into the following three stages: swelling, effective degradation, and over-degradation. The degree of swelling is mainly affected by the content and size of the rubber particles and it is physically condensed, while the degradation is mainly affected by the preparation temperature and preparation time. The effective interface interaction greatly affects the viscosity with the building of the stable three-dimensional network structure. The stronger the interface interaction, the greater the viscosity of the rubber-modified asphalt, except for the 25% content of rubber particles. The gel film will be generated on the surface of the rubber particles throughout the swelling and effective degradation, increasing the viscosity of the rubber-modified asphalt. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

17 pages, 4158 KiB  
Article
Implementing All-Weather Photocatalysis of Exhaust Fumes Based on the g-C3N4/TiO2/SrAl2O4: Eu2+, Dy3+ Ternary Composite Coating
by Bochao Zhou, Hailong Li, Ao Cui, Di Wang, Fucheng Guo and Chao Wang
Buildings 2024, 14(6), 1743; https://doi.org/10.3390/buildings14061743 - 10 Jun 2024
Viewed by 862
Abstract
This study examines the use of SrAl2O4: Eu2+, Dy3+ long-afterglow materials doped into g-C3N4/TiO2 coatings for photodegradation. The prepared sample was tested for the purification of automotive exhaust fumes, with the [...] Read more.
This study examines the use of SrAl2O4: Eu2+, Dy3+ long-afterglow materials doped into g-C3N4/TiO2 coatings for photodegradation. The prepared sample was tested for the purification of automotive exhaust fumes, with the optimal mass ratio of g-C3N4/TiO2 and SrAl2O4: Eu2+, Dy3+ determined to be 1:1. Characterization tests, including XRD, FT-IR, XPS, and TG-DSC, were conducted to evaluate the microstructure and properties of the samples. Under poor lighting conditions, g-C3N4/TiO2 reduced CH and NOx by 59 ppm and 13 ppm within 4 h, respectively, while g-C3N4/TiO2/SrAl2O4: Eu2+, Dy3+ decreased CH and NOx by 98ppm and 34ppm, respectively, resulting in a significant improvement in degradation efficiency. The addition of long-afterglow materials significantly improves the efficiency of photocatalysts in purifying exhaust fumes in low-light environments, providing potential value for all-weather exhaust treatment in the future. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

17 pages, 5731 KiB  
Article
Research on Laboratory Testing Method of Fatigue Performance of Semi-Rigid Base Considering Spatial Stress State
by Longfei Wang, Zhizhong Zhao, Hao Liang, Yilong He, Xianzhang Kang and Meng Xu
Buildings 2024, 14(2), 365; https://doi.org/10.3390/buildings14020365 - 29 Jan 2024
Viewed by 921
Abstract
In order to accurately assess the fatigue performance of semi-rigid base layers, this paper proposes a novel fatigue testing method for semi-rigid base layers that takes into account the spatial stress state. Based on this method, the fatigue performance of three types of [...] Read more.
In order to accurately assess the fatigue performance of semi-rigid base layers, this paper proposes a novel fatigue testing method for semi-rigid base layers that takes into account the spatial stress state. Based on this method, the fatigue performance of three types of reinforced semi-rigid base-layer materials (steel wire mesh, plastic geogrid, and fiberglass) was tested and compared with unreinforced materials. The fatigue strain evolution patterns of these materials were analyzed, and a fatigue strain characteristic value at the limit state was proposed as an evaluation index for the fatigue failure of base layer materials. The results showed that in terms of fatigue performance, plastic geogrid > steel wire mesh > fiberglass > unreinforced specimens. The development of tensile strain can be approximately classified into a three-stage growth pattern, consisting of “curve + straight line + curve”. For the unreinforced specimens, the three stages of bending strain accounted for 10%, 70%, and 20% of the total fatigue life, respectively. The fatigue failure stages of the three types of reinforced materials had similar proportional ranges, representing 5%, 75%, and 20% of the total fatigue life, respectively. The fatigue strain characteristic values for plastic geogrid, steel wire mesh, fiberglass, and unreinforced specimens were 371 με, 280 με, 280 με, and 195 με, respectively. In summary, the use of reinforced materials within semi-rigid base layers enhances their fatigue performance, providing new insights and methods for extending the service life of road surfaces and offering scientific guidance for the practical application of reinforced materials in semi-rigid base layer road surfaces’ fatigue performance. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

20 pages, 4926 KiB  
Article
An Explainable Evaluation Model for Building Thermal Comfort in China
by Haiyang Liu and Enlin Ma
Buildings 2023, 13(12), 3107; https://doi.org/10.3390/buildings13123107 - 14 Dec 2023
Cited by 2 | Viewed by 1210
Abstract
The concentration of atmospheric greenhouse gases is being amplified by human activity. Building energy consumption, particularly for heating and cooling purposes, constitutes a significant proportion of overall energy demand. This research aims to establish a smart evaluation model to understand the thermal requirements [...] Read more.
The concentration of atmospheric greenhouse gases is being amplified by human activity. Building energy consumption, particularly for heating and cooling purposes, constitutes a significant proportion of overall energy demand. This research aims to establish a smart evaluation model to understand the thermal requirements of building occupants based on an open-access dataset. This model is beneficial for making reasonable adjustments to building thermal management, based on factors such as different regions and building user characteristics. Employing Bayesian-optimized LightGBM and SHAP (SHapley Additive exPlanations) methods, an explainable machine learning model was developed to evaluate the thermal comfort design of buildings in different areas and with different purpose. Our developed LightGBM model exhibited superior evaluation performance on the test set, outperforming other machine learning models, such as XGBoost and SVR (Support Vector Regression). The SHAP method further helps us to understand the interior evaluation mechanism of the model and the interactive effect among input features. An accurate thermal comfort design for buildings based on the evaluation model can benefit the carbon-neutral strategy. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

Back to TopTop