Advances in Bioimaging Technology

A special issue of BioTech (ISSN 2673-6284). This special issue belongs to the section "Medical Biotechnology".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1298

Special Issue Editor


E-Mail Website
Guest Editor
Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
Interests: imaging mass spectrometry; omics analysis; cell engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to publish articles focused on advanced technical studies in bioimaging, its applications in the life sciences, and its practical uses in clinical settings, veterinary practice, the pharmaceutical industry, agriculture, fisheries, and ecological field surveys. The scope of this Special Issue includes, but is not limited to, the following topics:

  • Optical imaging, including fluorescence/luminescence imaging and super-resolution microscopy, which capture highly sensitive molecular imaging and fast molecular motion.
  • Electron imaging, including transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, which show significant progress in terms of sample preparation.
  • Magnetic resonance imaging, including diffusion tensor imaging, magnetic resonance spectroscopy, superconducting quantum interference devices, and NV center-based biomagnetic imaging, which images previously unseen molecules and structures.
  • Spatial omics, including spatial transcriptomics and mass imaging spectrometry, which combine multiple imaging techniques and show progress in data analysis.   
  • Other imaging techniques, including positron emission tomography, optical spectral imaging, acoustic imaging, ion mobility imaging, and AI-based imaging, which are crucial for advancing life sciences. 

These technologies require specialized skills and a deep understanding of biological samples, and can, in a broad sense, be considered part of “biotechnology”. Challenging applications beyond traditional uses are also within the scope of this Special Issue.

Dr. Tomoaki Kahyo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. BioTech is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • new concepts in bioimaging
  • development of bioimaging techniques
  • data analysis for bioimaging
  • bioimaging applications
  • bioimaging with AI

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2651 KiB  
Article
A Live-Cell Imaging-Based Fluorescent SARS-CoV-2 Neutralization Assay by Antibody-Mediated Blockage of Receptor Binding Domain-ACE2 Interaction
by Jorge L. Arias-Arias, Laura Monturiol-Gross and Eugenia Corrales-Aguilar
BioTech 2025, 14(1), 10; https://doi.org/10.3390/biotech14010010 - 14 Feb 2025
Viewed by 715
Abstract
Neutralization assays have become an important tool since the beginning of the COVID-19 pandemic for testing vaccine responses and therapeutic antibodies as well as for monitoring humoral immunity to SARS-CoV-2 in epidemiological studies. The spike glycoprotein (S) present on the viral surface contains [...] Read more.
Neutralization assays have become an important tool since the beginning of the COVID-19 pandemic for testing vaccine responses and therapeutic antibodies as well as for monitoring humoral immunity to SARS-CoV-2 in epidemiological studies. The spike glycoprotein (S) present on the viral surface contains a receptor binding domain (RBD) that recognizes the angiotensin-converting enzyme 2 receptor (ACE2) in host cells, allowing virus entry. The gold standard for determining SARS-CoV-2 neutralizing antibodies is the plaque reduction neutralization test (PRNT), which relies on live-virus replication performed exclusively in biosafety level 3 (BSL-3) laboratories. Here, we report the development of a surrogate live-cell imaging-based fluorescent SARS-CoV-2 neutralization assay, applicable to BSL-1 or BSL-2 laboratories, by antibody-mediated blockage of the interaction between recombinant RBD with overexpressed ACE2 receptor in a genetically modified HEK 293T stable cell line. Our approach was able to detect neutralizing antibodies both in COVID-19-positive human serum samples and polyclonal equine formulations against SARS-CoV-2. This new cell-based surrogate neutralization assay represents a virus-free fluorescence imaging alternative to the reported approaches, which can be used to detect antibody-neutralizing capabilities toward SARS-CoV-2. This assay could also be extrapolated in the future to other established and emergent viral agents. Full article
(This article belongs to the Special Issue Advances in Bioimaging Technology)
Show Figures

Figure 1

Back to TopTop