Advanced Research in Metabolic Syndrome (2nd Edition)

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Cell Biology and Pathology".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 1033

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
Interests: diabetes; hypercholesterolaemia; microcirculation; heart; retina; brain; blood vessels; pharmacology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of Biomedicines focuses on advanced research in metabolic syndrome, regardless of whether it is preclinical drug development research on laboratory animals or clinical research carried out with bioactive agents. As metabolic syndrome is highly diverse, affecting many organs (heart, brain, blood vessels, kidney, retina, etc.), and the intertwined diseases of the syndrome, such as obesity, diabetes, dyslipidemia, and hypertension, pose major challenges themselves, advanced therapeutic approaches developed against the syndrome can be of great benefit. Even less obviously related diseases—such as metabolic syndrome-related dementia types, endocrine function disorders, or microbiome changes—may also be of interest to readers. Investigations of the prevention and treatment of macro- and microcirculatory damage associated with the different aforementioned diseases of metabolic syndrome are most welcome, but studies on other well-recognized pathways related to the syndrome, such as oxidative stress, inflammation, and necro-apopto-autophagy, are also welcome.

Dr. Balazs Varga
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • obesity
  • diabetes
  • dyslipidemia
  • hypertension
  • microcirculatory damage
  • ischemia–reperfusion
  • necro-apopto-autophagy
  • laboratory animals
  • bioactive agents

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2235 KB  
Article
Comparison of Anti-Obesity Effects of Ginger Extract Alone and Mixed with Long Pepper Extract
by Gunju Song, Hyein Han, Heegu Jin, Jongwon Kim, Hyeongmin Kim, Yi-Seul Seo, Heewon Song and Boo-Yong Lee
Biomedicines 2025, 13(9), 2077; https://doi.org/10.3390/biomedicines13092077 - 26 Aug 2025
Viewed by 732
Abstract
Background/Objectives: Obesity is a chronic metabolic disorder characterized by the excessive expansion of adipose tissue and impaired energy homeostasis. Natural products, such as plant extracts, are gaining attention as potential anti-obesity agents. This study aimed to evaluate and compare the anti-obesity effects of [...] Read more.
Background/Objectives: Obesity is a chronic metabolic disorder characterized by the excessive expansion of adipose tissue and impaired energy homeostasis. Natural products, such as plant extracts, are gaining attention as potential anti-obesity agents. This study aimed to evaluate and compare the anti-obesity effects of ginger (Zingiber officinale Roscoe) extract alone and as a mixture with long pepper (Piper longum L.) extract in a mouse model of high-fat diet-induced obesity. Methods: Male ICR mice were fed a high-fat diet to induce obesity and were orally administered ginger extract (60 mg/kg/day) or a 1:1 mixture of ginger and long pepper extracts (30 mg/kg/day each) for 8 weeks. Body weight, fat mass, glucose tolerance, and serum lipid levels were measured. Results: Ginger extract alone significantly reduced body weight gain and visceral and subcutaneous fat accumulation and improved glucose homeostasis and serum lipid profiles compared to the high-fat diet group. These effects were more pronounced than those observed with the mixture group. Ginger extract upregulated lipolytic markers via activation of the protein kinase A (PKA) signaling pathway and increased expression of uncoupling protein 1 (UCP1), indicating browning of white adipose tissue. Conclusions: Ginger extract alone exhibited significant anti-obesity effects compared to the mixture with long pepper extract. These findings suggest that ginger extract may serve as a promising natural agent for the prevention and management of obesity-related metabolic dysfunction. Full article
(This article belongs to the Special Issue Advanced Research in Metabolic Syndrome (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop